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Analytical Inversion of Tridiagonal Hermitian Matrices

Yuri R. Hakopian and Avetik H. Manukyan

Yerevan State University, Yerevan, Armenia

e-mail: yuri.hakopian@ysu.am, avetiq.manukyan1@ysumail.am

Abstract

1. Introduction

Tridiagonal matrices are encountered in many areas of applied mathematics. Such matri-
ces are of great importance in finite difference and finite element methods for differential
equations. The construction of cubic splines is reduced to solving systems with tridiag-
onal matrices. Symmetric matrices are reduced to tridiagonal matrices by the similarity
Householder transformation (see [1, 2, 3], for instance). Other examples can be cited.

There is a well-known fast numerical method for solving systems with tridiagonal matri-
ces. At the same time, the analytical matrix inversion is also of certain interest (see [4, 5, 6],
for instance). For tridiagonal matrices of special types, this leads to closed-form expressions
for the elements of inverse matrices [7, 8, 9, 10]. This is undoubtedly useful in theoreti-
cal considerations. Further, explicit formulas can be a part of more general computational
procedures. There are other reasons as well.

In this article, we focus our attention on complex Hermitian tridiagonal matrices. We
will construct a fairly simple computational procedure, consisting of a sequence of recurrence
relations, leading to the calculation of the elements of the inverse matrix. In special cases, in
particular for Toeplitz tridiagonal Hermitian matrices, the procedure can become the basis
for deriving closed-form expressions for the elements of the inverse matrix.

We note right away that throughout this article z stands for the complex conjugate of
the complex number z.

7

In this paper we give an algorithm for inverting complex tridiagonal Hermitian
matrices with optimal computational efforts. For matrices of a special form and, in
particular, for Toeplitz matrices, the derived formulas lead to closed-form expressions
for the elements of inverse matrices.
Keywords: Inverse matrix, Tridiagonal matrix, Hermitian matrix, Toeplitz matrix.
Article info: Received 21 April 2022; received in revised form 15 July 2022; accepted
23 August 2022.



8 Analytical Inversion of Tridiagonal Hermitian Matrices

Let a nonsingular tridiagonal Hermitian matrix

A =



a1 b1
b1 a2 b2 0

. . . . . . . . .

0 bn−2 an−1 bn−1

bn−1 an

 (1)

be given, where ai, i = 1, 2, . . . , n are real numbers and bi ̸= 0 for i = 1, 2, . . . , n − 1. In
accordance with the accepted notation, A = A∗. We assume that n > 3. The requirement
that the subdiagonal (superdiagonal) elements of the matrix be nonzero is not restrictive.
Indeed, if some of these elements are equal to zero, the problem of computing the inverse
matrix is decomposed into several similar problems for tridiagonal matrices of lower order.

2. Preliminary Calculations

Let A−1 = [xij]n×n. This matrix is also Hermitian. In our considerations we will use the
notation

X(j) ≡ [x1 j x2 j . . . xn j]
T , j = 1, 2, . . . , n

for the columns of the inverse matrix.
The matrix A can be represented as a product

A = DB (2)

of the matrices
D = diag [b1, b1, b2, . . . , bn−2, bn−1] (3)

and

B =



p 1
1 f2 g2 0

1 f3 g3
. . . . . . . . .

0 1 fn−1 gn−1

1 q


, (4)

where

fi =
ai

bi−1

, gi =
bi

bi−1

, i = 2, 3, . . . , n− 1; p =
a1
b1
, q =

an

bn−1

. (5)

Having a nonsingular matrix B defined in (4), let us consider the following system of
linear algebraic equations

pµ1 + µ2 = α

µi−1 + fiµi + giµi+1 = 0, 2 ≤ i ≤ n− 1

µn−1 + qµn = 0,

(6)

where we will set the right-hand side α of the first equation a little later. It is easy to verify
that regardless of the choice of α, the recursively defined quantities

µn = 1 , µn−1 = −q ,

µi−1 = −fiµi − giµi+1 , i = n− 1, n− 2, . . . , 2
(7)
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satisfy all equations of the system (6), starting with the second one. Then, we choose the
quantity α as follows:

α = pµ1 + µ2. (8)

Remark 1 Since, by assumption, the matrix B is nonsingular (it follows from (2)), then
α ̸= 0. Indeed, otherwise we would have obtained that the homogeneous system (6) has a
nontrivial solution. Further,

α =
a1
b1
µ1 + µ2 =

1

b1
(a1µ1 + b1µ2).

Therefore
a1µ1 + b1µ2 ̸= 0

as well.

Thus,
α = b−1

1 t−1, (9)

where
t ≡ (a1µ1 + b1µ2)

−1. (10)

Let us introduce the vector
r(1) ≡ [µ1 µ2 . . . µn]

T ,

the components of which are specified in (7). As follows from (4), (6) and (9),

Br(1) = [α 0 . . . 0]T = αe(1) = b−1
1 t−1e(1),

where e(1) ≡ [1 0 . . . 0]T . Further, on the basis of factorization (2) of the matrix A, we obtain
the equality

Ar(1) = DBr(1) = b−1
1 t−1De(1) = t−1e(1); (11)

here we have used the obvious equality De(1) = b1e
(1) (see (3)). The equality (11) allows to

compute the first column of the inverse matrix A−1. Indeed, from this equality we find that

A−1e(1) = tr(1).

Since A−1e(1) = X(1), then X(1) = tr(1), or

xi1 = tµi, i = 1, 2, . . . , n. (12)

Thus, we have found the first column of the inverse matrix. Similarly, we can calculate
the last column of the matrix A−1. For this purpose, let us consider the linear system

pν1 + ν2 = 0

νi−1 + fiνi + giνi+1 = 0, 2 ≤ i ≤ n− 1

νn−1 + qνn = β,

(13)

where we will set the right-hand side β of the last equation later. Regardless of the choice
of β, the recursively defined quantities

ν1 = 1 , ν2 = −p ,

νi+1 = − 1

gi
(νi−1 + fiνi) , i = 2, 3, . . . , n− 1

(14)
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satisfy the first n−1 equations of the system (13). Then we choose the quantity β as follows:

β = νn−1 + qνn. (15)

Since the matrix B is nonsingular, then β ̸= 0 (see Remark 1). Substituting the expression
of the quantity q given in (5) into (15) yields

β = νn−1 +
an

bn−1

νn =
1

bn−1

(bn−1νn−1 + anνn).

Thus,

β = bn−1
−1
θ−1, (16)

where
θ ≡ (bn−1νn−1 + anνn)

−1.

Now let us introduce the vector

r(n) ≡ [ν1 ν2 . . . νn]
T ,

the components of which are specified in (14). From (4), (13) and (16) we find that

Br(n) = [0, . . . 0 β]T = βe(n) = bn−1
−1
θ−1e(n),

where e(n) ≡ [0 . . . 0 1]T . Having the factorization (2) of the matrix A, we obtain the equality

Ar(n) = DBr(n) = bn−1
−1
θ−1De(n) = θ−1e(n).

From here,
A−1e(n) = θr(n).

Since A−1e(n) = X(n), then X(n) = θr(n), or

xin = θνi, i = 1, 2, . . . , n. (17)

Let us refine the last expression. From (12), xn1 = tµn = t. Further, according to (17),
x1n = θν1 = θ. Since A−1 is a Hermitian matrix, then x1n = xn1. Consequently, θ = t, and
we come to the conclusion that

xin = tνi, i = 1, 2, . . . , n. (18)

So, we have found the first and the last columns of the Hermitian matrix A−1. These
are expressions (12) and (18). Taking into account that ν1 = 1 and µn = 1, we write these
elements in the form of

xi1 = tµiν1, xin = t µnνi, i = 1, 2, . . . , n. (19)

Moreover, the diagonal elements x11 = tµ1ν1 and xnn = t µnνn are real numbers. Therefore,
we can write xnn = tµnνn as well.

Looking ahead, we say that in the next section we will prove that the quantities

tµiνi, i = 2, 3, . . . , n− 1 (20)

are the remaining diagonal elements of the matrix A−1. To do this, here we first establish
that the quantities (20) are real numbers (naturally, without assuming that they are somehow
related to the matrix A−1).

Let us introduce into consideration the quantities

Ri ≡ bi−1(tµiνi−1) + bi−1(tµi−1νi), i = 2, 3, . . . , n− 2. (21)
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Lemma 1. The quantity R2 is a real number.

Proof. Since ν1 = 1 and ν2 = −p (see (2.13)), then

R2 = t(b1µ2ν1 + b1µ1ν2) = tb1(µ2 − pµ1).

Further, taking into account the equalities (8) and (9), we get

R2 = tb1(α− 2pµ1) = tb1α− 2pb1(tµ1) = 1− 2a1(tµ1).

The quantities a1 and tµ1 are real numbers, so R2 is also a real number. 2

Lemma 2. The quantities Ri from (21) satisfy the relations

Ri = −Ri−1 − 2ai−1(tµi−1νi−1), i = 3, 4, . . . , n− 2. (22)

Proof. From (6) we have the equality

µi−2 + fi−1µi−1 + gi−1µi = 0.

Using formulas (5), let us write this equality in the form of

bi−2µi−2 + ai−1µi−1 + bi−1µi = 0.

Multiplying both parts of the last equality by tνi−1, we get that

bi−1(tµiνi−1) = −bi−2(tµi−2νi−1)− ai−1(tµi−1νi−1). (23)

Similarly, from (13) we have the equality

νi−2 + fi−1νi−1 + gi−1νi = 0,

which can be written as follows:

bi−2νi−2 + ai−1νi−1 + bi−1νi = 0.

Multiplying both parts of this equality by tµi−1 yields

bi−1(tµi−1νi) = −bi−2(tµi−1νi−2)− ai−1(tµi−1νi−1). (24)

The relation (22) follows directly from the equalities (23) and (24). 2

Lemma 3. The quantities tµiνi, i = 2, 3, . . . , n− 1 are real numbers.

Proof. Consider first the quantity tµ2ν2. Since pµ1 + µ2 = α and ν2 = −p (see (6) and
(14)), then

tµ2ν2 = t(pµ1 − α)p = (pp)(tµ1)− tαp.

Further, using the equality (9), we obtain that

tµ2ν2 = (pp)(tµ1)−
p

b1
= (pp)(tµ1)−

a1

b1b1
.

Thus, the quantity tµ2ν2 is a real number.
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Next, consider the quantity tµ3ν3. As follows from (6) and (13),

µ3 = −a2
b2
µ2 −

b1
b2
µ1, ν3 = −a2

b2
ν2 −

b1

b2
ν1.

Proceeding from these equalities, we get that

tµ3ν3 =
1

b2b2

[
a22(tµ2ν2) + b1b1(tµ1ν1) + a2R2

]
.

The quantities tµ1ν1 and tµ2ν2 are real numbers. According to Lemma 1, the quantity R2

is also a real number. Therefore, tµ3ν3 is a real number as well.
Further reasoning will be carried out by the method of mathematical induction on i.

Suppose that for some value of i, where 3 ≤ i ≤ n − 2, it is already known that the
quantities tµkνk, k ≤ i and Rk, k ≤ i− 1 are real numbers. From (6) and (13) we have

µi+1 = −ai
bi
µi −

bi−1

bi
µi−1, νi+1 = −ai

bi
νi −

bi−1

bi
νi−1.

Then

tµi+1νi+1 =
1

bibi

[
a2i (tµiνi) + bi−1bi−1(tµi−1νi−1) + aiRi

]
.

Hence, by virtue of the assumptions made and taking into account the assertion of Lemma
2, we arrive at a conclusion that the quantity tµi+1νi+1 is a real number. 2

Remark 2 We have established that the quantities tµiνi, i = 1, 2, . . . , n are real numbers.
Therefore, tµiνi = t µiνi.

3. The Elements of the Inverse Matrix

Above we obtained the expressions (19) for the elements of the first and the last columns
of the inverse matrix, as well as some auxiliary statements. Based on these results, here we
derive formulas for the remaining elements of the inverse matrix.

Let 2 ≤ j ≤ n− 1. We introduce into consideration the vector

r(j) ≡ [ t µjν1 , . . . , t µjνj−1, tµjνj, tµj+1νj , . . . , tµnνj]
T , (25)

where the quantities µi and νi are specified in (7) and (14), respectively. Multiplying the
matrix B defined in (4) and the vector r(j) yields

Br(j) = z(j), (26)

where the components of the vector

z(j) = [z
(j)
1 z

(j)
2 . . . z

(j)
j−1 δj z

(j)
j+1 . . . z

(j)
n−1 z(j)n ]T

are calculated as follows:

z
(j)
1 = t µj(pν1 + ν2),

z
(j)
i = t µj(νi−1 + fiνi + giνi+1), 2 ≤ i ≤ j − 1,

δj = t µjνj−1 + fj(tµjνj) + gj(tµj+1νj),

z
(j)
i = t(µi−1 + fiµi + giµi+1)νj, j + 1 ≤ i ≤ n− 1,

z(j)n = t(µn−1 + qµn)νj.
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Having equations (6) and (13), we conclude that z
(j)
i = 0 for 1 ≤ i ≤ j−1 and j+1 ≤ i ≤ n.

Thus,
z(j) = [0 . . . 0 δj 0 . . . 0]T = δje

(j), (27)

where e(j) = [0 . . . 0 1 0 . . . 0]T (the unit is located on jth place).
It remains to clarify the quantity δj. Taking into account Remark 2, we have

δj = t µjνj−1 + fj(t µjνj) + gj(tµj+1νj)

= t µj(νj−1 + fjνj) + gj(tµj+1νj).
(28)

Since νj−1 + fjνj = −gjνj+1 (see (13)), then

δj = gj(tµj+1νj − t µjνj+1), 2 ≤ j ≤ n− 1. (29)

Let us get one more representation of the quantity δj. Since gjµj+1 = −µj−1−fjµj (see (6)),
then from(28) it follows that

δj = t µjνj−1 − tµj−1νj + fj(t µjνj − tµjνj).

From here, according to Remark 2, we obtain

δj = t µjνj−1 − tµj−1νj, 2 ≤ j ≤ n− 1. (30)

Assuming that 3 ≤ j ≤ n− 1, we can write the expression (30) in the form of

δj =
1

gj−1

gj−1(tµjνj−1 − t µj−1νj).

Comparing with the record (29), we arrive at the relation

δj =
1

gj−1

δj−1, 3 ≤ j ≤ n− 1. (31)

Based on the relation (31), one can easily show that

δj =

 bj−1
−1
b1δ2 , if j is odd,

bj−1
−1
b1δ2 , if j is even.

(32)

Finally, let us calculate the quantity δ2. According to the representation (30), we have

δ2 = t µ2ν1 − tµ1ν2 = t µ2 + tµ1p

= t µ2 + t µ1 p = t (µ2 + p µ1) = t α = b1
−1
,

(33)

(see (6) and (9)). Thus, from (32) and (33) we conclude that

δj = bj−1
−1
, j = 2, 3, . . . , n− 1. (34)

Summing up the results, from (27) and (34) we come to the equality

z(j) = bj−1
−1
e(j). (35)



14 Analytical Inversion of Tridiagonal Hermitian Matrices

Proceeding from the factorization (2) of the matrix A and using the equalities (26) and
(35), we have

Ar(j) = DBr(j) = Dz(j) = bj−1
−1
De(j) = e(j)

(note that De(j) = bj−1e
(j), which follows from (3)). Further,

A−1e(j) = r(j).

Since A−1e(j) = X(j), then X(j) = r(j). The components of the vector r(j) are given in (25).
Thus,

xij = t µjνi, i = 1, 2, . . . , j − 1 and xij = tµiνj, i = j, j + 1, . . . , n. (36)

Combining formulas (36) with those of (12) and (18) yields

xij =

 t µjνi, i = 1, 2, . . . , j − 1,

tµiνj, i = j, j + 1, . . . , n
for j = 1, 2, . . . , n. (37)

Note the following. Since the matrix A−1 is also Hermitian, then in reality we only need
to calculate the lower triangular part of this matrix.

Summarizing the considerations of Sections 2 and 3, let us write the following procedure
to calculate the elements of the inverse matrix A−1 = [xij]n×n for nonsingular matrix A given
in (1).

Procedure Inv 3dHermitian

1. Input elements a1, a2, . . . , an and b1, b2, . . . , bn−1 of the matrix A (see (1)).

2. Calculate the quantities fi, gi, p and q (see (5)):

fi =
ai

bi−1

, gi =
bi

bi−1

, i = 2, 3, . . . , n− 1; p =
a1
b1
, q =

an

bn−1

.

3. Calculate recursively the quantities µi (see (7)):

µn = 1 , µn−1 = −q ,

µi = −fi+1µi+1 − gi+1µi+2 , i = n− 2, n− 3, . . . , 1.

4. Calculate recursively the quantities νi (see (14)):

ν1 = 1 , ν2 = −p ,

νi = − 1

gi−1

(νi−2 + fi−1νi−1) , i = 3, 4, . . . , n.

5. Calculate the quantity t (see (10) and Remark 1):

t = (a1µ1 + b1µ2)
−1.

6. Calculate the lower triangular part of the matrix A−1 (see (37)):

xij = tµiνj, i = j, j + 1, . . . , n ; j = 1, 2, . . . , n .
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7. Set the upper triangular part of the matrix A−1 (see (37)):

xij = xji, i = 1, 2, . . . , j − 1 ; j = 2, 3, . . . , n .

8. Output the matrix A−1 = [xij]n×n.

End procedure

The procedure Inv 3dHermitian can be useful for the following purposes. Firstly, it can
be used as a basis of numerical algorithms for inverting nonsingular tridiagonal Hermitian
matrices. In this case, it is easy to make sure that computing the lower triangular part of the
matrix A−1 requires 0.5n2 +O(n) arithmetical operations with complex numbers. Secondly,
for matrices of special types, the procedure can be used for deriving closed form expressions
for the elements of inverse matrices. The next section is devoted to this issue.

4. Toeplitz Tridiagonal Hermitian Matrices

Let us consider a matrix

A =



a b
b a b 0

. . . . . . . . .

0 b a b
b a

 (38)

of order n, where a is a real number and b ̸= 0. Additionally, we assume that

|a| ≥ 2|b|. (39)

Condition (39) ensures the nonsingularity of the matrix (38) (see [11], for instance).
For the matrix we are considering, the quantities calculated in Item 2 of the procedure

Inv 3dHermitian are as follows:

fi =
a

b
, gi =

b

b
, i = 2, 3, . . . , n− 1; p =

a

b
, q =

a

b
.

Further, in Item 3 of the procedure, the quantities µi are calculated. In our case, we have
second-order recurrent relations

bµi + aµi+1 + bµi+2 = 0 , i = n− 2, n− 3, . . . , 1,

where µn = 1, µn−1 = −a/b. The solution of this problem is well known (see [2, 6], for
instance). As a result of calculations, we get that

µi = (−1)n−i b

r

[(
a+ r

2b

)n+1−i

−
(
a− r

2b

)n+1−i
]
, i = 1, 2, . . . , n if |a| > 2|b| (40)

and

µi = (−1)n−i (n+ 1− i)
(
a

2b

)i−n

, i = 1, 2, . . . , n if |a| = 2|b|, (41)

where
r ≡

√
a2 − 4|b|2.
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In a similar way, we find expressions for the quantities νi determined in Item 4 of the
procedure. These quantities satisfy the following second-order recurrent relations:

bνi−2 + aνi−1 + bνi = 0 , i = 3, 4, . . . , n,

where ν1 = 1, ν2 = −a/b. Making calculations, we find that

νi = (−1)i−1 b

r

[(
a+ r

2b

)i

−
(
a− r

2b

)i
]
, i = 1, 2, . . . , n if |a| > 2|b| (42)

and

νi = (−1)i−1 i
(
a

2b

)i−1

, i = 1, 2, . . . , n if |a| = 2|b|. (43)

In Item 5 of the procedure, the quantity t is calculated. Using the expressions (40) and
(41), we get

t = (−1)n−1 r

b
2

[(
a+ r

2b

)n+1

−
(
a− r

2b

)n+1
]−1

if |a| > 2|b| (44)

and

t =
(−1)n−1

n+ 1

2

a

(
a

2b

)n−1

if |a| = 2|b|. (45)

Finally, in Items 6 and 7 of the procedure, the elements xij of the inverse matrix A−1

are calculated. If |a| > 2|b|, then we use the formulas (40), (42) and (44). For the values
j = 1, 2, . . . , n, we obtain that

xij =
(−1)j−i

r

[(
a+ r

2b

)i

−
(
a− r

2b

)i
] [(

a+ r

2b

)n+1−j

−
(
a− r

2b

)n+1−j
]

[(
a+ r

2b

)n+1

−
(
a− r

2b

)n+1
] (46)

if i = 1, 2, . . . , j − 1 and

xij =
(−1)i−j

r

[(
a+ r

2b

)n+1−i

−
(
a− r

2b

)n+1−i
] [(

a+ r

2b

)j

−
(
a− r

2b

)j
]

[(
a+ r

2b

)n+1

−
(
a− r

2b

)n+1
] (47)

if i = j, j + 1, . . . , n. As an example, consider the matrix

A =



5 2i

−2i 5 2i 0
. . . . . . . . .

0 −2i 5 2i

−2i 5

 .

According to the expressions (46) and (47) we find that

xij =



(2i − 2−i)(2n+1−j − 2−n−1+j)

3(2n+1 − 2−n−1)
ii−j, i = 1, 2, . . . , j − 1,

(2n+1−i − 2−n−1+i)(2j − 2−j)

3(2n+1 − 2−n−1)
ii−j, i = j, j + 1, . . . , n,
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where the symbol i stands for the imaginary unit.
Now consider the case |a| = 2|b|. For the values j = 1, 2, . . . , n, using the formulas (41),

(43) and (45), we find that

xij =


(−1)j−i (n+ 1− j)i

n+ 1

2

a

(
a

2b

)i−1 ( a

2b

)j−1

, i = 1, 2, . . . , j − 1,

(−1)i−j (n+ 1− i)j

n+ 1

2

a

(
a

2b

)i−1 ( a

2b

)j−1

, i = j, j + 1, . . . , n.

(48)

For the matrix

A =



2 i

−i 2 i 0
. . . . . . . . .

0 −i 2 i

−i 2

 ,

the expressions (48) take the following form:

xij =


(−1)j

(n− j + 1)i

n+ 1
ii+j, i = 1, 2, . . . , j − 1,

(−1)j
(n− i+ 1)j

n+ 1
ii+j, i = j, j + 1, . . . , n,

j = 1, 2, . . . , n.

5. Conclusion

In this paper, we have constructed the computational procedure Inv 3dHermitian for inver-
sion of tridiagonal Hermitian matrices. This procedure can be used as a numerical algorithm
with an optimal number of arithmetic operations (see the comment on the procedure at the
end of Section 3). In certain cases, the procedure can also be used to derive closed-form ex-
pressions for the elements of inverse matrices. In this regard, Toeplitz tridiagonal Hermitian
matrices in Section 4 were considered.
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ïîñëåäîâàòåëüíîñòü ðåêóððåíòíûõ ñîîòíîøåíèé, ïðèâîäÿùèõ ê âû÷èñëåíèþ
ýëåìåíòîâ îáðàòíîé ìàòðèöû. Äëÿ ìàòðèö ñïåöèàëüíîãî òèïà è, â ÷àñòíîñòè,
äëÿ ò¸ïëèöåâûõ òðåõäèàãîíàëüíûõ ýðìèòîâûõ ìàòðèö, ïîëó÷åííûå ñîîòíîøåíèÿ
ïðèâîäÿò ê ÿâíûì ôîðìóëàì äëÿ ýëåìåíòîâ îáðàòíîé ìàòðèöû.
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Abstract

LetD be a 2-strong digraph of order n ≥ 8 such that for every vertex x ∈ V(D)\{z},
d(x) ≥ n and d(z) ≥ n− 4, where z is a vertex in V(D). We prove that:

If D contains a cycle passing through z of length equal to n− 2, then D is Hamil-
tonian.

1. Introduction

In this paper, we consider finite digraphs (directed graphs) without loops and multiple arcs.
The order of a digraph D is the number of its vertices. We shall assume that the reader
is familiar with the standard terminology on digraphs. Terminology and notations not
described below follow [1]. Every cycle and path is assumed simple and directed. A cycle
(path) in a digraph D is called Hamiltonian (Hamiltonian path) if it includes every vertex
of D. A digraph D is Hamiltonian if it contains a Hamiltonian cycle, and it is Hamiltonian-
connected if for any pair of ordered vertices x and y there exists a Hamiltonian path from x
to y.

There are numerous sufficient conditions for the existence of a Hamiltonian cycle in a
digraph (see, [1]–[3]). Let us recall the following sufficient conditions for a digraph to be
Hamiltonian.

Theorem 1: (Ghouila-Houri [4]). Let D be a strong digraph of order n ≥ 2. If for every
vertex x ∈ V(D), d(x) ≥ n, then D is Hamiltonian.

Theorem 2: (Meyniel [5]). Let D be a strong digraph of order n ≥ 2. If d(x)+d(y) ≥ 2n−1
for all pairs of non-adjacent vertices x and y in D, then D is Hamiltonian.

Nash-Williams [6] raised the problem of describing all the extreme digraphs in Theorem 1,
that is, all digraphs with minimum degree at least |D| − 1, that do not have a Hamiltonian

20

We also give a new sufficient condition for a digraph to be Hamiltonian-connected.
Keywords: Digraphs, Hamiltonian cycles, Hamiltonian-connected, 2-strong.
Article info: Received 21 April 2022; received in revised form 16 September 2022;
accepted 15 November 2022.
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cycle. As a solution to this problem, Thomassen [7] proved a structural theorem on the
extreme digraphs. An analogous problem for Theorem 2 was considered by the author [8]. In
[8], we generalize Thomassen’s structural theorem (Theorem 1, in [7]), characterizing the non-
Hamiltonian strong digraphs of order n with the degree condition that d(x) + d(y) ≥ 2n− 2
for every pair of non-adjacent distinct vertices x, y. Moreover, in [8], it was also proved that
ifm is the length of a longest cycle in D, then D contains cycles of all lengths k = 2, 3, . . . ,m.
The following conjecture was suggested by Thomassen.

Conjecture 1: (Thomassen [9], see Conjecure 1.6.7 in [2]). Every 3-strong digraph of order
n and with minimum degree at least n+ 1 is Hamiltonian-connected.

In [10], we disprove this conjecture, by proving the following three theorems.

Theorem 3: Every k-strong (k ≥ 1) digraph of order n, which has n− 1 vertices of degrees
at least n, is Hamiltonian if and only if any (k + 1)-strong digraph of order n + 1 with
minimum degree at least n+ 2 is Hamiltonian-connected.

Theorem 4: For every n ≥ 8, there is a non-Hamiltonian 2-strong digraph D of order n
with minimum degree equal to 4 such that D has n− 1 vertices of degrees at least n.

Theorem 5: For every n ≥ 9, there exists a 3-strong digraph D of order n with minimum
degree at least n+1 such that D contains two distinct vertices u, v for which u ↔ v, d+D(u)+
d−D(v) = 6 and there is no (u, v)-Hamiltonian path.

In view of Theorems 4, 5 and Conjecture 1, it is natural to pose the following problem.

Problem: Let D be a 2-strong digraph of order n ≥ 9. Suppose that n − 1 vertices of D
have degrees at least n and a vertex x has degree is at least n −m, where 1 ≤ m ≤ n − 5.
Find the maximum value of m, for which D is Hamiltonian.

Goldberg, Levitskaya and Satanovskiy [11] relaxed the conditions of the Ghouila-Houri
theorem. They proved the following theorem.

Theorem 6: (Goldberg et al. [11]). Let D be a strong digraph of order n ≥ 2. If for every
vertex x ∈ V(D) \ {z}, d(x) ≥ n and d(z) ≥ n− 1, then D is Hamiltonian.

Note that Theorem 6 is an immediate consequence of Theorem 2. In [11], the authors for
any n ≥ 5 presented two examples of non-Hamiltonian strong digraphs of order n such that:

(i) In the first example, n − 2 vertices have degrees equal to n + 1 and the other two
vertices have degrees equal to n− 1.

(ii) In the second example, n−1 vertices have degrees at least n and the remaining vertex
has degree equal to n− 2.

In [12], it was reported that the following theorem holds.

Theorem 7: (Darbinyan [12]). Let D be a 2-strong digraph of order n ≥ 9 with minimum
degree at least n− 4. If n− 1 vertices of D have degrees at least n, then D is Hamiltonian.

In this article, we present the first part of the proof of Theorem 7, which we formulate as
Theorem 9. The proof of the last theorem has never been published. It is worth mentioning
that the proof presented here differs from the previous handwritten proof and is significantly
shorter and more general than the previous one. The second part of the proof (i.e., the
complete proof) of Theorem 7 we will present in the forthcoming paper, where we also
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present two examples of digraphs, which show that the bounds n ≥ 9 and n− 4 in Theorem
7 are sharp in a sense.

2. Further Terminology and Notation

For the sake of clarity we repeat the most impotent definition. The vertex set and the arc set
of a digraph D are denoted by V(D) and A(D), respectively. The order of a digraph D is the
number of its vertices. The converse digraph ofD is the digraph obtained fromD by reversing
the direction of all arcs. The arc of a digraph D directed from x to y is denoted by xy or
x → y (we also say that x dominates y or y is an out-neighbour of x and x is an in-neighbour of
y), and x ↔ y denotes that x → y and y → x (x ↔ y is called 2-cycle). If x → y and y → z,
we write x → y → z. If A and B are two disjoint subsets of V(D) such that every vertex of
A dominates every vertex of B, then we say that A dominates B, denoted by A → B. We
define A(A → B) = {xy ∈ A(D) |x ∈ A, y ∈ B} and A(A,B) = A(A → B) ∪ A(B → A).
If x ∈ V(D) and A = {x} we sometimes write x instead of {x}. Let N+

D (x), N
−
D (x) denote

the set of out-neighbors, respectively the set of in-neighbors of a vertex x in a digraph
D. If A ⊆ V(D), then N+

D (x,A) = A ∩ N+
D (x) and N−

D (x,A) = A ∩ N−
D (x). The out-

degree of x is d+D(x) = |N+
D (x)| and d−D(x) = |N−

D (x)| is the in-degree of x. Similarly,
d+D(x,A) = |N+

D (x,A)| and d−D(x,A) = |N−
D (x,A)|. The degree of the vertex x in D is

defined as dD(x) = d+D(x) + d−D(x) (similarly, dD(x,A) = d+D(x,A) + d−D(x,A)). We omit the
subscript if the digraph is clear from the context. The subdigraph of D induced by a subset
A of V(D) is denoted by D. In particular, D − A = D⟨V(D) \ A⟩. For integers a and b,
a ≤ b, by [a, b] we denote the set {xa, xa+1, . . . , xb}. If j < i, then {xi, . . . , xj} = ∅.

The path (respectively, the cycle) consisting of the distinct vertices x1, x2, . . . , xm (m ≥ 2)
and the arcs xixi+1, i ∈ [1,m− 1] (respectively, xixi+1, i ∈ [1,m− 1], and xmx1), is denoted
by x1x2 · · · xm (respectively, x1x2 · · ·xmx1). The length of a cycle or a path is the number
of its arcs. Let D be a digraph and z ∈ V(D). By Cm(z) (respectively, C(z)) we denote a
cycle in D of length m (respectively, any cycle in D), which contains the vertex z. We say
that P = x1x2 · · ·xm is a path from x1 to xm or is an (x1, xm)-path. A digraph D is strong
(strongly connected) if, for every pair x, y of distinct vertices in D, there exists an (x, y)-path
and a (y, x)-path. A digraph D is k-strong (k-strongly connected) if, |V(D)| ≥ ∥ + ∞ and
for any set A of at most k − 1 vertices D − A is strong. Two distinct vertices x and y are
adjacent if xy ∈ or yx ∈ A(D) (or both). The converse digraph of D is the digraph obtained
from D by replacing the direction of all arcs. We will use the principle of digraph duality:
Let D be a digraph, then D contains a subdigraps H if and only if the converse digraph of
D contain the converse of subdigraph H.

3. Preliminaries

In our proofs, we will use the following well-known simple lemma.

Lemma 1: (Häggkvist and Thomassen [13]). Let D be a digraph of order n ≥ 3 containing
a cycle Cm of length m, m ∈ [2, n − 1]. Let x be a vertex not contained in this cycle. If
d(x,V(Cm)) ≥ m+ 1, then for every k ∈ [2,m+ 1], D contains a cycle Ck including x.

The next lemma is a slight modification of a lemma by Bondy and Thomassen [14], it is
very useful and will be used extensively throughout this paper.
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Lemma 2:. Let D be a digraph of order n ≥ 3 containing a path P := x1x2 . . . xm, m ∈
[2, n − 1]. Let x be a vertex not contained in this path. If one of the following condition
holds:

(i) d(x,V(P )) ≥ m+ 2,
(ii) d(x,V(P )) ≥ m+ 1 and xx1 /∈ A(D) or xmx /∈ A(D),
(iii) d(x,V(P )) ≥ m and xx1 /∈ A(D) and xmx /∈ A(D),
then there is an i ∈ [1,m − 1] such that xi → x → xi+1, i.e., D contains a path

x1x2 . . . xixxi+1 . . . xm of length m (we say that x can be inserted into P ).

Using Lemma 2, we can prove the following lemma.

Lemma 3: Let P := x1x2 . . . xm, m ∈ [3, n−1], be a longest (x1, xm)-path in a digraph D of
order n. Suppose that y ∈ V(D)\V(P ) and there is no i ∈ [1,m−2] such that xi → y → xi+2.
Then the following holds:

(i) If yx1 /∈ A(D), x1y ∈ A(D) and d(y,V(P )) ≥ m, then d(y,V(P )) = m and
{x1, x2, . . . , xm} → y;

(ii) If xmy /∈ A(D), yxm ∈ A(D) and d(y,V(P )) ≥ m, then d(y,V(P )) = m and
y → {x1, x2, . . . , xm};

(iii) If d(y,V(P )) ≥ m+1, then d(y,V(P )) = m+1 and there exists an integer q ∈ [1,m]
such that {xq, xq+1, . . . , xm} → y → {x1, x2, . . . , xq}.

Proof. To prove the lemma, it suffices to show that every vertex xi ∈ V(P) is adjacent to y.
Assume that this is not the case. (i) Let y and xt be not adjacent. Then t ≥ 2 since x1 → y.
Since P is a longest (x1, xm)-path, we have that y cannot be inserted into P . Using Lemma
2(ii) and the assumption that yx1 /∈ A(D), we obtain xmy ∈ A(D), 2 ≤ t ≤ m− 1 and

m ≤ d(y,V(P )) = d(y, {x1, . . . , xt−1}) + d(y, {xt+1, . . . , xm}) ≤ t− 1 + (m− t+ 1) = m.

This means that d(y, {x1, . . . , xt−1}) = t − 1 and d(y, {xt+1, . . . , xm}) = m − t + 1. Again
using Lemma 2, we obtain that xt−1 → y → xt+1, which contradicts the supposition of
Lemma 3. This contradiction shows that every vertex xi is adjacent to y.

In a similar way, one can show that if (ii) or (iii) holds, then every vertex of P also is
adjacent to y. Lemma 3 is proved.

In [10], the author proved the following theorem.

Theorem 8: (Darbinyan [12]). Let D be a strong digraph of order n ≥ 3. Suppouse that
d(x)+d(y) ≥ 2n−1 for all pairs of non-adjacent vertices x, y ∈ V(D)\{z}, where z is some
vertex in V(D). Then D is Hamiltonian or contains a cycle of length n− 1.

Using Theorem 8 and Lemmas 1 and 2, it is not difficult to show that the following
corollaries are true.

Corollary 1: Let D be a strong digraph of order n ≥ 3 satisfying the condition of Theorem
8. Then D has a cycle that contains all the vertices of D maybe except z.

Corollary 2: Let D be a strong digraph of order n ≥ 3. Suppose that n − 1 vertices of D
have degrees at least n. Then D is Hamiltonian or contains a cycle of length n− 1 (in fact,
D has a cycle that contains all the vertices of degrees at least n).

In this section, we also will prove the following lemma. We will use this lemma in the
second part of the proof of Theorem 7.
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Lemma 4: Let D be a digraph of order n ≥ 4 such that for any vertex x ∈ V(D)\{z}, d(x) ≥
n and d(z) ≤ n − 2, where z is some vertex in V(D). Suppose that Cm(z) = x1x2 . . . xmx1

with m ≤ n−2 is a longest cycle through z. If D⟨V (D)\V (Cm(z))⟩ is strong and D contains
a Cm(z)-bypass P = xiy1y2 . . . ylxj such that |V(Cm(z)[xi+1, xj−1])| is smallest possible over
all Cm(z)-bypasses, then z ∈ V(Cm(z)[xi+1, xj−1]).

Proof. Without loss of generality, we assume that xj = x1, xi = xm−k, k ≥ 1,
A({y1, . . . , yl},V(Cm(z)[xm−k+1, xm])) = ∅ and k is minimum possible with this property
over all Cm(z)-bypasses. Extending the path Cm(z)[x1, xm−k] with the vertices of
V(Cm(z)[xm−k+1, xm]) as much as possible, we obtain an (x1, xm−k)-path, say R. Since
Cm(z) is a longest cycle through z, some vertices u1, u2, . . . , ud ∈ V(Cm(z)[xm−k+1, xm]),
1 ≤ d ≤ k, are not on the obtained extended path R. Using Lemma 2, we ob-
tain that d(yi,VV (Cm(z))) ≤ m − k + 1 and d(ui,V(Cm(z))) ≤ m + d − 1. Put
B := V(D) \ (V(Cm(z)) ∪ V(P)). Note that |B| = n − m − l. Let v be an arbitrary
vertex in B. From the minimality of k, we have that D contains no paths of the types
ui → v → yj and yj → v → ui, which in turn implies that d+(ui, B) + d−(yj, B) ≤ |B| and
d−(ui, B)+ d+(yj, B) ≤ |B|. Therefore, d(ui, B)+ d(yj, B) ≤ 2|B| = 2(n−m− l). Thus, we
have

d(ui) + d(yj) = d(ui,V(Cm(z))) + d(yj,V(Cm(z))) + d(ui, B) + d(yj, B) + d(yj, {y1, . . . , yl})
≤ m+ d− 1 +m− k + 1 + 2n− 2m− 2l + 2l − 2 = 2n− 2− (k − d) ≤ 2n− 2.

This is possible if ui = z. Therefore, d = 1 and z ∈ V(Cm(z)[xm−k+1, xm]). Lemma 4 is
proved.

4. The Main Result

In this section, we prove the following theorem.

Theorem 9: Let D be a 2-strong digraph of order n ≥ 8. Suppose that for every x ∈
V(D) \ {z}, d(x) ≥ n and d(z) ≥ n− 4, where z is a vertex in V(D). If D contains a cycle
of length n− 2 passing through z (i.e., a cycle Cn−2(z)), then D is Hamiltonian.

Before we prove our main result, we will prove the following lemma.

Lemma 5: Let D be a non-Hamiltonian 2-strong digraph of order n such that for any
vertex x ∈ V(D) \ {z}, d(x) ≥ n and d(z) ≤ n − 2, where z is an arbitrary fixed vertex in
V(D). Suppose that Cm+1(z) = x1x2 . . . xmzx1 with m ∈ [2, n − 3] is a longest cycle in D,
d(z, Y ) = 0 and D⟨Y ⟩ is a strong digraph, where Y := V(D) \ V(Cm+1(z)). Let y1, y2 be two
distinct vertices in Y . If for each yi ∈ {y1, y2}, d(yi, {x1, x2, . . . , xm}) = m + 1, then n ≥ 6
and d(z) ≤ m− 2.

Proof. By contradiction, suppose that d(z) ≥ m−1. We denote by P the path x1x2 . . . xm.
Note that |Y | = n −m − 1. Since the path P cannot be extended with any vertex y ∈ Y ,
by Lemma 2, d(y,V(P )) ≤ m+ 1 and

n ≤ d(y) = d(y,V(P )) + d(y, Y ) ≤ m+ 1 + d(y, Y ), d(y, Y ) ≥ n−m− 1 = |Y |. (1)

Since D is 2-strong and Cm+1(z) is a longest cycle, using Lemma 2 and d(yi,V(P )) = m+1
it is not difficult to show that there is an integer l ∈ [2,m− 1] such that

{xl, xl+1, . . . , xm} → {y1, y2} → {x1, x2, . . . , xl}. (2)
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Since d(y, Y ) ≥ n − m − 1 = |Y |(by (1)), and D⟨Y ⟩ is strong, by the Ghouila-Houri
theorem, D⟨Y ⟩ is Hamiltonian. Put E := {x1, x2, . . . , xl−1} and F := {xl+1, xl+2, . . . , xm}.
Since Cm+1(z) is a longest cycle and D⟨Y ⟩ is strong, from (2) it follows that

A(E → Y) = A(Y → F) = ∅. (3)

Note that from |Y | ≥ 2, |E| ≥ 1 and |F | ≥ 1 it follows that n ≥ 6. We need to prove the
following Claims 1-2 bellow.

Claim 1.
(i) If d−(z, E) ≥ 1, then d+(z, F ) = 0.
(ii) A(E → F) ̸= ∅.

Proof. (i) By contradiction, suppose that xi ∈ E, xj ∈ F and xi → z → xj. Then by
(2), y1 → xi+1 and xj−1 → y2. Hence, Cm+3(z) = x1x2 . . . xizxj . . . xmy1xi+1 . . . xj−1y2x1, a
contradiction.

(ii) Suppose, on the contrary, that A(E → F) = ∅. Then using Claim 1(i) and (3), we
obtain: if d−(z, E) ≥ 1, then d+(z, F ) = 0 and A(E ∪ Y ∪ {z} → F ) = ∅, if d−(z, E) = 0,
then A(E ∪ Y → F ∪ {z}) = ∅. Therefore, D − xl is not strong, which contradicts that D
is 2-strong.

From now on, we assume that xaxb ∈ A(E → F). Note that 1 ≤ a ≤ l − 1 and
l + 1 ≤ b ≤ m. We may assume that b is the maximum and a is the minimum with these
properties. By (2), we have

xb−1 → {y1, y2} → xa+1. (4)

Since z cannot be inserted into P , using Lemma 2(ii) and Clam 1(i), we obtain

d(z, {x1, x2, . . . , xa}) + d(z, {xb, xb+1, . . . , xm}) ≤ a+m− b+ 2. (5)

By R(yi, y3−i), where i ∈ [1, 2], we denote a longest (yi, y3−i)-path in D⟨Y ⟩. From now
on, assume that R(yi, y3−i) = R(y1, y2).

Claim 2.
(i) If i ∈ [a+ 1, l − 1], then xiz /∈ A(D).
(ii) If j ∈ [l + 1, b− 1], then zxj /∈ A(D).
(iii) If i ∈ [a+ 1, l] and i− a ≤ 2, then zxi /∈ A(D).
(iv) If j ∈ [l, b− 1] and b− j ≤ 2, then xjz /∈ A(D).

Proof. Each of claims (i)-(iv) we prove by contradiction.
(i) Assume that i ∈ [a + 1, l − 1] and xiz ∈ A(D). Then by (2) and (4), we have

Cm+3(z) = x1x2 . . . xaxb . . . xmy1xi+1 . . . xb−1y2xa+1 . . . xizx1, a contradiction.
(ii) Assume that j ∈ [l + 1, b − 1] and zxj ∈ A(D). Then by (2) and (4), we have

Cm+3(z) = x1x2 . . . xaxb . . . xmzxj . . . xb−1y1xa+1 . . . xj−1y2x1, a contradiction.
(iii) Assume that i ∈ [a+ 1, l], i− a ≤ 2 and zxi ∈ A(D). Then C(z) = x1x2 . . . xaxb . . .

xmzxi . . . xb−1R(y1, y2)x1 is a cycle of length at least m+ 2, a contradiction.
(iv) Assume that j ∈ [l, b− 1], b− j ≤ 2 and xjz ∈ A(D). Then C(z) = x1x2 . . . xaxb . . .

xmR(y1, y2)xa+1 . . . xjzx1 is a cycle of length at least m + 2, a contradiction. Claim 2 is
proved.
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Now we will consider the following cases depending on the values of a and b with respect
to l.

Case 1. a ≤ l − 3 and b ≥ l + 3.
Then by Claim 2, d(z, {xa+1, xa+2, xb−2, xb−1}) = 0. Therefore, since z cannot be inserted

into P , using (5) and Lemma 2, we obtain

m− 1 ≤ d(z, {x1, x2, . . . , xa, xb, xb+1, . . . , xm}) + d(z, {xa+3, . . . , xb−3})

≤ a+m− b+ 2 + b− 3− a− 2 + 1 = m− 2,

which is a contradiction.
Case 2. a ≤ l − 3 and b = l + 2.
Then by Claim 2, d(z, {xa+1, xa+2, xl+1}) = 0 and xlz /∈ A(D). Therefore, since z cannot

be inserted into P , using (5) and Lemma 2, we obtain

m− 1 ≤ d(z, {x1, x2, . . . , xa, xb, xb+1, . . . , xm}) + d(z, {xa+3, . . . , xl})

≤ a+m− b+ 2 + l − a− 2 = m− (l + 2) + l = m− 2,

which is a contradiction.
Case 3. a ≤ l − 3 and b = l + 1.
Then by Claim 2, d(z, {xa+1, xa+2}) = 0 and xlz /∈ A(D). Similar to Case 2, we obtain

m− 1 ≤ d(z, {x1, x2, . . . , xa, xb, xb+1, . . . , xm}) + d(z, {xa+3, . . . , xl})

≤ a+m− b+ 2 + l − a− 2 = m− b+ l = m− (l + 1) = m− 1.

This implies that d(z, {xa+3, . . . , xl}) = l − a − 2. Hence, by Claim 2(i) and xlz /∈ A(D),
z → {xa+3, . . . , xl}. From this and (4), we see that the cycle Q(z) = x1x2 . . . xaxb . . . xmz
xa+3 . . . xlR(y1, y2)x1 has length equal to m− 1 + |V(R(y1, y2))|. Since Cm+1(z) is a longest
cycle and D⟨Y ⟩ is Hamiltonian, it follows that |V(R(y1, y2))| = |Y | = 2. Then m = n − 3,
y1 ↔ y2, xa+1 ↔ xa+2 and xa+1 (xa+2) is adjacent to each vertex xi ∈ {x1, x2, . . . xm}, as
d(xa+1) ≥ n (d(xa+2) ≥ n) and xa+1 (xa+2) cannot be inserted into Q(z).

We will distinguish two subcases.
Subcase 3.1. m ≥ l + 2. From the minimality of a and the maximality of b, it follows

that

A({x1, x2, . . . , xa} → {xb+1, xb+2, . . . , xm}) = ∅. (6)

Assume that xi → xj with i ∈ [a + 1, l] and j ∈ [l + 2,m]. Using (4) and the
fact that zxa+3 ∈ A(D), it is not difficult to see that if i ∈ [a + 1, a + 2], then
C(z) = x1x2 . . . xa+1(xa+2)xj . . . xmzxa+3 . . . xj−1y1y2x1 is a cycle of length at least m + 2,
if i ∈ [a + 3, l − 1], then Cm+3(z) = x1x2 . . . xixj . . . xmzxi+1 . . . xj−1y1y2x1, if i = l, then
Cm+3(z) = x1x2 . . . xaxl+1 . . . xj−1y1y2xa+1 . . . xlxj . . . xmzx1. Thus, in all cases, we have a
contradiction. We may, therefore, assume that (recall that b = l + 1)

A({xa+1, xa+2, . . . , xl} → {xb+1, xb+2, . . . , xm}) = ∅.

Combining this with (6), we obtain

A({x1, x2, . . . , xl} → {xb+1, xb+2, . . . , xm}) = ∅. (7)
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Assume first that d−(z, E) ≥ 1. Then by Claim 1(i), d+(z, F ) = 0. This together
with (3) and (7) implies that A({z, x1, x2, . . . , xl} ∪ Y → {xl+2, xl+3, . . . , xm}) = ∅. As-
sume second that d−(z, E) = 0. Since xlz /∈ A(D), we obtain A({x1, x2, . . . , xl} ∪ Y →
{z, xl+2, xl+3, . . . , xm}) = ∅. So, in both cases we have that the subdigraph D − xl+1 is not
strong, which contradicts that D is 2-strong.

Subcase 3.2. b = l + 1 = m.
Assume that a ≥ 2. As mentioned above, either x1 → xa+1 or xa+1 → x1. Therefore,

Cm+3(z) = x1xa+1 . . . xm−1y1y2x2 . . . xaxmzx1 or Cm+2(z) = x1 . . . xaxmzxa+3 . . . xm−1y1y2
xa+1x1. So, in both cases, we have a contradiction.

Assume next that a = 1. Then from d−(z, {x2, x3, . . . , xm−1}) = 0 (by Claims 2(i) and
2(iv)) and d−(z) ≥ 2 it follows that x1 → z. We know that z → {xa+3, . . . , xl}. Using this,
it is not difficult to see that if xi → xm with i ∈ [2,m − 2], then for i = 2, Cm+2(z) =
x1x2xmzx4 . . . xm−1y1y2x1, and for i ∈ [3,m− 2], Cm+3(z) = x1x2 . . . xixmzxi+1 . . . xm−1y1
y2x1, a contradiction. We may, therefore, assume that

d−(xm, {x2, x3, . . . , xm−2}) = 0. (8)

Now we consider the vertex x1. If xj → x1 with j ∈ [2,m − 2], then for j = 2, Cm+2(z) =
x1xmzx4 . . . xm−1y1y2x2x1, and for j ∈ [3,m− 2], Cm+3(z) = x1xmzxj+1 . . . xm−1y1y2x2 . . .
xjx1. Thus, in both cases, we have a contradiction. We may, therefore, assume that
d−(x1, {x2, x3, . . . , xm−2}) = 0. This together with (3), (8) and d−(z, {x2, x3, . . . , xm−1}) = 0
implies that

A({x2, x3, . . . , xm−2} → Y ∪ {z, x1, xm}) = ∅.

This means that D − xm−1 is not strong, which contradicts that D is 2-strong.
Case 4. a = l− 2. Taking into account Case 2 and the digraph duality, we may assume

that b ≤ l + 2.
Subcase 4.1. a = l − 2 and b = l + 2. Then by Claim 2, d(z, {xl−1, xl, xl+1}) = 0. This

together with (5) implies that

m− 1 ≤ d(z, {x1, x2, . . . , xa, xb, xb+1, . . . , xm}) ≤ a+m− b+ 2

= m+ l − 2− l − 2 + 2 = m− 2,

a contradiction.
Subcase 4.2. a = l − 2 and b = l + 1. Then by Claim 2, d(z, {xl−1, xl}) = 0.
Assume first that m ≥ l + 2. If there exist i ∈ [l − 1, l] and j ∈ [l + 2,m] such

that xi → xj, then C(z) = x1x2 . . . xl−2xl+1 . . . xj−1R(y1, y2)xixj . . . xmzx1 is a cycle of
length at least m + 2, a contradiction. We may, therefore, assume that A({xl−1, xl} →
{xl+2, xl+3, . . . , xm}) = ∅. This together with (3), the minimality of a and the maximality of b
implies that A({x1, x2, . . . , xl} → {xl+2, xl+3, . . . , xm}) = ∅. Therefore, if d−(z, E) = 0, then
A({x1, x2, . . . , xl}∪Y → {z, xl+2, xl+3, . . . , xm}) = ∅, and if d−(z, E) ≥ 1, then d+(z, F ) = 0
(Claim 1(i)) and A({z, x1, x2, . . . , xl} ∪ Y → {xl+2, xl+3, . . . , xm}) = ∅. Thus, in both cases,
we have that D − xl+1 is not strong, a contradiction.

Assume next that m = l + 1. Then a = l − 2 = m − 3. Let a ≥ 2. From
the minimality of a it follows that d−(xm, {x1, x2, . . . , xa−1}) = 0. If there exist i ∈
[1, a − 1] and j ∈ [a + 1, a + 2] such that xi → xj, then it is easy to see that C(z) =
x1x2 . . . xixj . . . xm−1R(y1, y2)xi+1 . . . xaxmzx1 is a cycle of length at least m+2, a contradic-
tion. We may, therefore, assume that A({x1, x2, . . . , xa−1} → {xa+1, xa+2, xa+3 = xm}) = ∅.
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From this we have: if d−(z, {x1, x2, . . . , xa−1) = 0, then

A({x1, x2, . . . , xa−1} → Y ∪ {z, xa+1, xa+2, xa+3}) = ∅,

if d−(z, {x1, x2, . . . , xa−1) ≥ 1, then by Claim 1(i), zxm /∈ A(D) and

A({x1, x2, . . . , xa−1} ∪ {z} → Y ∪ {xa+1, xa+2, xa+3}) = ∅.

So, in both cases, we have that D − xa is not strong, which contradicts that D is 2-strong.
Let now a = 1. Then m = 4 = b = l + 1 and d(z, {x2, x3}) = 0. This together with
d(z, Y ) = 0, d+(z) ≥ 2 and d−(z) ≥ 2 implies that x1 → z → x4, which contradicts Claim
1(i).

Case 5. a = l − 1. Taking into account Cases 3 and 4, we may assume that b = l + 1.
Then d(z, {xl}) = 0, and from (3), the minimality of a and the maximality of b it follows
that

A({x1, x2, . . . , xl−1} → Y ∪ {xl+2, xl+3, . . . , xm})

= A({x1, x2, . . . , xl−2} → Y ∪ {xl+1, xl+2, . . . , xm}) = ∅. (9)

It is not difficult see that: if xl → xj with j ∈ [l + 2,m], then C(z) = x1x2 . . . xl−1xl+1 . . .
xj−1R(y1, y2)xlxj . . . xmzx1 is a cycle of length at least m + 3, if xi → xl with i ∈ [1, l − 2],
then C(z) = x1x2 . . . xixlR(y1, y2)xi+1 . . . xl−1xl+1 . . . xmzx1 is a cycle of length at least
m + 3. So, in both cases we have a contradiction. We may, therefore, assume that
d+(xl, {xl+2xl+3, . . . , xm}) = d−(xl, {x1, . . . , xl−2}) = 0. Then by (9),

A({x1, x2, . . . , xl−2} → {xl, xl+1, . . . , xm})

= A({x1, x2, . . . , xl} → {xl+2, xl+3, . . . , xm}) = ∅. (10)

Assume that m ≥ l + 2. If d−(z, E) ≥ 1, then d+(z, F ) = 0 (Claim 1(i)). This together
with (3), (10), d(z, {xl}) = 0 and d(z, Y ) = 0 implies that A({z, x1, x2, . . . , xl} ∪ Y →
{xl+2, xl+3, . . . , xm}) = ∅, which in turn implies that D− xl+1 is not strong, a contradiction.
We may, therefore, assume that d−(z, E) = 0. Now it is not difficult to see that

A({x1, x2, . . . , xl} ∪ Y → {z, xl+2, xl+3, . . . , xm}) = ∅.

This means that D − xl+1 is not strong, a contradiction.
Assume now that m = l+1. By the digraph duality, we may assume that a = l− 1 = 1.

Hence, b = l + 1 = m = 3. Then, since d+(z) ≥ 2 and d−(z) ≥ 2, x1 → z → xm, which
contradicts Claim 1(i). The discussion of Case 5 is completed. Lemma 5 is proved.

Now we are ready to prove the main result. For the convenience of the reader, we restate
it here.

Theorem 9: Let D be a 2-strong digraph of order n ≥ 8 and z be a fixed vertex in V(D).
Suppose that for any vertex x ∈ V(D) \ {z}, d(x) ≥ n, d(z) ≥ n− 4, and D contains a cycle
of length n− 2 passing through z. Then D is Hamiltonian.

Proof. Suppose, on the contrary, that D contains a cycle Cn−2(z) := x1x2 . . . xn−2x1 but
it is not Hamiltonian. By Theorem 3 (or by Theorem 2), d(z) ≤ n − 2. Let {y1, y2} =
V(D) \ V(Cn−2(z)). Since z ∈ V(Cn−2(z)), we have that d(yi) ≥ n. Using Lemma 1,
it is easy to show that D contains no Cn−1(z), d(y1) = d(y2) = n, d(y1,V(Cn−2(z))) =
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d(y2,V(Cn−2(z))) = n − 2 and y1 ↔ y2. If y1 or y2 is adjacent to every vertex xi, i ∈
[1, n − 2], then D contains a cycle C(z) of length at least n − 1, a contradiction. We
may, therefore, assume that y1 and some vertex of Cn−2(z) are not adjacent, say xn−2.
Then d(y1, {x1, x2, . . . , xn−3}) = n− 2. Since y1 cannot be inserted into x1x2 . . . xn−3, using
Lemma 2, we obtain that xn−3 → y1 → x1. This together with y1 ↔ y2 implies that
d(xn−2, {y1, y2}) = 0 (for otherwise, D contains a cycle of length at least n − 1 through z,
which is a contradiction). Therefore, d(y2, {x1, x2, . . . , xn−3}) = n − 2, and by Lemma 2,
xn−3 → y2 → x1. Then Cn−1 = x1x2 . . . xn−3y1y2x1 is a cycle of length n− 1. We know that
Cn−1 does not contain the vertex z. Therefore, z = xn−2. Thus, we have that the conditions
of Lemma 5 hold. Therefore, d(z) ≤ n−5, which contradicts that d(z) ≥ n−4. The theorem
is proved.

In [15], Overbeck-Larisch proved the following sufficient condition for a digraph to be
Hamiltonian-connected.

Theorem 10: (Overbeck-Larisch [15]). Let D be a 2-strong digraph of order n ≥ 3 such
that, for each two non-adjacent distinct vertices x, y we have d(x)+ d(y) ≥ 2n+1. Then for
each two distinct vertices u, v with d+(u)+ d−(v) ≥ n+1 there is a Hamiltonian (u, v)-path.

Let D be a digraph of order n ≥ 3 and let u and v be two distinct vertices in V(D).
Follows Overbeck-Larisch [15], we define a new digraph HD(u, v) as follows: V(HD(u, v)) =
V(D−{u, v})∪{z} (z a new vertex) and A(HD(u, v)) = A(D−{u, v})∪{zy | y ∈ N+

D−v(u)}∪
{yz | y ∈ N−

D−u(v)}.

Now, using Theorem 7, we will prove the following theorem, which is an analogue of the
Overbeck-Larisch theorem.

Theorem 11: Let D be a 3-strong digraph of order n + 1 ≥ 10 with minimum degree at
least n+2. If for two distinct vertices u, v, d+D(u)+ d−D(v) ≥ n− 2 or d+D(u)+ d−D(v) ≥ n− 4
with uv /∈ A(D), then there is a Hamiltonian (u, v)-path in D.

Proof. Let D be a 3-strong digraph of order n+1 ≥ 10 and let u, v be two distinct vertices
in V(D). Suppose that D and u, v satisfy the degree conditions of the theorem. Now we
consider the digraph H := HD(u, v) of order n ≥ 9. By an easy computation, we obtain
that the minimum degree of H is at least n − 4, and H has n − 1 vertices of degrees at
least n. Moreover, we know that H is 2-strong (see [10]). Thus, the digraph H satisfies
the conditions of Theorem 7. Therefore, H is Hamiltonian, which in turn implies that in D
there is a Hamiltonian (u, v)-path.

5. Conclusion

For Hamiltonicity of a graph G (undirected graph), there are numerous sufficient conditions
in terms of the number k(G) of connectivity, where k(G) ≥ 3 (recall that for a graph G to
be Hamiltonian, k(G) ≥ 2 is a necessary condition) and the minimum degree δ(G) (or the
sum of degrees of some vertices with certain properties), see the survey papers by Gould,
e.g. [16]. This is not the case for the general digraphs. In [17], the author proved that:
For every pair of integers k ≥ 2 and n ≥ 4k + 1 (respectively, n = 4k + 1), there exists a
k-strong (n−1)-regular (respectively, with minimum degree at least n−1 and with minimum
semi-degrees at least 2k−1 = (n−3)/2) a non-Hamiltonian digraph of order n. In [1] (Page
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253), it was showed that there is no k such that every k-strong multipartite tournament with
a cycle factor has Hamiltonian cycle.

Based on the evidence from Theorem 9, we raise the following conjecture, the truth of
which in the case k = 0 follows from Theorem 9.

Conjecture 2: Let D be a 2-strong digraph of order n and z be a fixed vertex in V(D).
Suppose that for any vertex x ∈ V(D) \ {z}, d(x) ≥ n+ k and d(z) ≥ n− k− 4, where k ≥ 0
is an integer. Then D is Hamiltonian.
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Abstract

In this paper, we evaluate several model-free algorithms for clustering time series
datasets generated by GARCH processes. In extensive experiments, we generate
synthetic datasets in different scenarios. Then, we compare K-Means (for Euclidian and
dynamic time warping distance), K-Shape, and Kernel K-Means models with different
clustering metrics. Several experiments show that the K-Means model with dynamic
time warping distance archives comparably better results. However, the considered
models have significant shortcomings in improving the clustering accuracy when the
amount of information (the minimum length of the time series) increases, and in
performing accurate clustering when data is unbalanced or clusters are overlapping.
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1. Introduction

Time series clustering has been used in diverse scientific disciplines to discover patterns and
extract valuable information from complex and massive datasets. These algorithms have
a wide range of applications in many research areas, for instance, in finance, biology, and
robotics [1].

Time series clustering approaches can be classified as feature-based, shape-based, and
model-based [1]. It is noteworthy that these methods are based on dissimilarity measures
on time series data, according to which the time series data points are grouped by some
clustering method (for instance, PAM).

In general, shape-based methods use linear and non-linear transformations to align
time series samples and calculate dissimilarity measures on aligned samples. Additionally,
shape-based algorithms process the time series data directly without making any statistical
assumptions about the underlying data generating processes. On the contrary, model-based
methods make statistical assumptions on time series generating processes. In general, model-
based approaches assume that time series samples are generated from specific models (for
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instance, ARIMA [2], Mixtures of ARIMAs [3]). Time series samples are transformed into
fitted models, and then a suitable distance and a clustering algorithm are applied to the
estimated model parameters.

Although several benchmarking results on different real-world datasets for non-
parametric clustering methods can be found in ([4], [5], [6]), the comparison of non-
parametric clustering methods on time series data generated from GARCH processes is
not well studied. In this paper, we are interested in non-parametric models evaluation of
time series data generated from the well-known GARCH process, which is the actual choice
for modeling the volatility of returns on financial assets. We simulate multiple GARCH
models with different data generating scenarios and compare several non-parametric time
series clustering models.

Motivated by [4], for comparison we choose well-known partition-based time series
clustering models: K-Means, K-Means with dynamic time warping and DTW barycenter
averaging, K-Shape and Kernel K-Means models. Furthermore, we can find open-source
implementations of these algorithms [7].

Although the main focus in the field of time series clustering comparison remains
clustering accuracy metrics, in this work we also explore a number of other challenges of
model-free methods. In particular, we study the ability of the above-mentioned model-
free methods to cluster GARCH processes with imbalanced, overlapping clusters and also
examine the impact of increasing information on clustering accuracy.

2. Related Work

In time series analysis research, benchmarking and numerical comparison have been
recognized as integral steps to justify theoretical results. The importance of numerical
comparison is emphasized in [8], where the authors reimplemented many time-series
classification algorithms and compared them in 50 real-world datasets. The authors note
that most reported methods have insignificant improvements regarding the variance of the
evaluation metrics. This empirical evidence reclaimed the statement of the importance of
the time series benchmark datasets and the empirical evaluation of the suggested methods.

Among the works that compare time series clustering models based on real-world
datasets, we can mention ([4], [5], [6]) works. In [4], authors compare several partition,
density, and hierarchical clustering methods to cluster all time series datasets available in
the University of California Riverside (UCR) archive [9]. They conclude that the overall
performance of the eight compared algorithms is quite similar with high dependence on the
evaluation dataset.

The method of comparing time series clustering algorithms with synthetic, generated
datasets also attracts a lot of attention among scholars. In addition to the actual clusters
being known, this comparison method gives additional flexibility to examining the behavior
of algorithms in different situations. In particular, scholars discussed the difference between
stationary and non-stationary time series [10], the presence of noise in time series samples
[11], the presence of noise clusters in time series dataset [11].
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3. Clusters of GARCH

The GARCH process is introduced in [12] for statistical modeling of the volatility of returns
on financial assets. The GARCH model has many extensions such as asymmetric GARCH
[13], threshold GARCH [14]. The GARCH(p,q) model is defined as follows:

yt = µt + ϵt

ϵt = σtet, where et i.i.d E(et) = 0, var(et) = 1,

σ2
t = ω +

p∑
i=1

αiϵ
2
t−i +

q∑
j=1

βjσ
2
t−j,

where
ω > 0,

αi ≥ 0, i = 1, 2, ..., p,

βj ≥ 0, i = 1, 2, ..., q.

The GARCH(p, q) model admits a strictly stationary solution with a finite variance if
and only if

p∑
i=1

αi +

q∑
j=1

βj < 1. (1)

Moreover, this strictly stationary solution is also unique. [15]

For the evaluation of non-parametric models, we chose constant zero mean specification
for the GARCH model because it is advised to standardize input data prior to clustering.
In addition, we choose the innovations et as standard Gaussian innovations. So µt = 0 and
et ∼ N (0,1).

In order to measure the clustering accuracy, we need to define the ground truth clusters
of GARCH processes. Let N,K, T ∈ N where K is the number of clusters, N is the number
of samples and T is the time sample size of each series. In this paper, we consider samples
with a fixed time size T , because some of the models (ex. KM-E) support samples with fixed
length. We denote by P i = (ω, α1, α2, ..., αpi , β1, β2, ..., βqi) the vector of all parameters for
the given GARCH(pi,qi) model.

Let {P i}Ki=1 be a family of GARCH process parameters, where K is a number of clusters.
Assume that each P i(i = 1, 2, ..., K) is unique and all the parameters satisfy (1) in order
to provide a strict stationary solution of the corresponding model. We are given N samples
of time series Yi = {yit}Ti=1, where each sample is generated from one of the K GARCH
processes.

Definition 1. We say that Yi and Yj samples are from the same cluster if they are generated
from the same GARCH process.

In other words, a cluster of GARCH processes is a set of samples that are generated with
the same parameters. The uniqueness of the parameters P i and Definition 1 imply that the
given sample belongs to exactly one cluster.
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4. Evaluation Models

For evaluation, we choose well-known non-parametric time series clustering models such as
K-Means with Euclidean (KM-E) and dynamic time warping metrics (KM-DTW), K-Shape,
and Kernel K-Means with Fast Global Alignment Kernel (KKM-GAK) models. KM-E uses
Euclidean distance, for cluster assignment and means averaging for the barycenter (centroid)
computation. It is known that the Euclidean distance metric is not the most accurate metric
for measuring time series similarities. Firstly, to use Euclidean distance, we need to take
into account the order of elements in the time series; secondly, the Euclidean distance does
not consider a phase shift between two curves or a length difference between the series. In
this paper, we consider this model for comparison with more complex approaches.

KM-DTW uses dynamic time warping [16] for cluster assignment and DTW barycenter
averaging (DBA)[17] algorithm for averaging time series within the same cluster.

k-Shape [18] is a partitional clustering algorithm that relies on an iterative refinement
procedure similar to the one used in K-Means. To measure the distance between time series,
K-Shape uses a normalized version of the cross-correlation measure to consider the shapes
of time series while comparing them. During the iterative procedure, this model minimizes
the sum of squared distances between the sequences of time series.

Kernel K-Means[19] is an alternative clustering algorithm that uses kernel functions as
a nonlinear mapping from the input space to a higher dimensional space. By using kernels,
Kernel K-Means can separate clusters in higher dimensional space, even if the input data
is not non-linearly separable in the input space. For treating time series data, practitioners
usually used Global Alignment Kernels [20]. We will refer to this algorithm KKM-GAK.

The problem is to generate synthetic datasets and evaluate non-parametric models for
clustering time series processes generated by the GARCH model.

5. Assessment Metrics

In practice, the use of clustering methods is due to working with unlabeled datasets. As a
result, we can find evaluation metrics that can evaluate clustering models without having
labeled data. These types of metrics are called internal. By the method of our data
generating process, we can use external measures, which assume that ground truth labels
are available. Examples of this type of metrics are the Rand Index (RI) [21], the Adjusted
Rand Index (ARI) [22], the Adjusted Mutual Information (AMI)[23].

Following the evaluation made in [4] in our study, we choose the Adjusted Rand Index,
because the values of this metric are consistently low for random cluster assignments and do
not depend on the number of clusters.

6. Experiments

To evaluate non-parametric models, we simulate random datasets with different setups. In
the first experiment, we measure the ability of the models of clustering different numbers
of clusters. For this purpose, we generate datasets for 2, 4, 8, and 10 clusters, respectively.
For each number of clusters, we generate random parameter families, which satisfy (1) for
guaranteeing a unique and stationary solution of processes. For the purpose of generating
a family of parameters, we constrain the maximum length of p and q by 5. This constraint
is inherited from the common choice of GARCH models with fewer parameters. For every
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parameter vector P i (cluster), we generate samples for the given cluster and separate them
into training and testing parts (30% testing) and repeat this process for averaging purposes.
In Table 1, we present the results of the first experiment evaluated with the AMI metric. We
can see that the KM-DTW model outperforms other models. In the second experiment,

Table 1: AMI score for different N clusters

N clusters KM-E KM-DTW k-Shape KKM-GAK

2 0.003+-0.001 0.325+-0.403 0.004+-0.009 0.003+-0.002

4 0.004+-0.001 0.463+-0.129 0.02+-0.007 0.002+-0.001

6 0.018+-0.016 0.578+-0.151 0.043+-0.021 0.001+-0.0005

8 0.006+-0.003 0.498+-0.077 0.005+-0.011 0.001+-0.0005

10 0.005+-0.01 0.624+-0.03 0.062+-0.022 0.0001+-0.00005

we measure the clustering quality in scenarios when the amount of information increases.
We generate datasets with 5 clusters and 100 samples in each cluster. We set T = 1000 and
consider 5 intervals on the time axis. We train and evaluate models in the first interval and
consequently add information. From the second experiment, we can see that the KM-DTW
model outperforms other models, but we do not observe increased accuracy as a result of
adding information. There is a significant increase in the accuracy of the KM-DTW model
when the number of samples increases from 200 to 400, but further increases in the number
of samples do not improve the accuracy of the model. The K-Shape model also shows a slight
improvement in accuracy when the number of samples increases from 800 to 1000. Given
that model-based methods rely on ML/Quasy ML estimates of the parameters of GARCH
models and also the asymptotic properties of these estimates, this experiment may suggest
that model-based methods have the potential to increase clustering accuracy as information
increases. The results of the second experiment are displayed in Fig. 1.

Fig. 1. AMI for different time intervals.
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Fig. 2 shows the results of the third experiment. In this experiment, we measure the
ability of the KM-DTW model to cluster an imbalanced dataset. For the fairness of the
experiment, we generate time series samples with the GARCH(1,1) process and ensure that
parameters satisfy (1). In addition, we constrain the L2 norm of generated parameters
to obtain non-overlapping clusters. We generate a dataset with different sample ratios and
increase the ratio to 1. In the figure, we can observe that the best model for other experiments
KM-DTW is dependent on cluster imbalance. This experiment shows that the claim made
in [24] that centroid-based methods should be adapted to unbalanced scenarios also holds in
the domain of time series clustering.

Fig. 2. Results for clustering imbalanced dataset.

Moreover, we measure the effect of the L2 norm of generated parameters in clustering
accuracy. We generate parameters for GARCH(1,1) process so that the parameters satisfy
the current restriction on the L2 norm. Throughout the experiment, we increase the bounds
of the L2 norm. During each step, we generate a balanced dataset with T = 500, C = 2, and
100 samples per cluster. We train models ten times for averaging purposes. We can observe
that the KM-DTW model depends on clusters overlapping and increasing the bounds of
parameters L2 norm results in improvement of AMI. This problem is directly related to the
ability of the similarity measure used in the KM-DTW algorithm to distinguish realizations
of the GARCH process with parameters that are close to each other with the L2 norm.
7. Conclusion and Future Work

In this work, several non-parametric clustering algorithms for clustering time series datasets
generated by GARCH processes are evaluated. We generate multiple datasets and conduct
multiple experiments to evaluate the K-Means (with Euclidean and dynamic time warping
distance), K-Shape, and Kernel K-Means models. In the first experiment, we evaluate the
ability of models to cluster different numbers of clusters. The results of the first experiment
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Fig. 3. GARCH parameters vector L2 norm versus AMI score.

are displayed in Table 1. In the second experiment, we measure the clustering quality in the
scenarios when the amount of information increases. We generate a dataset with 1000 time
length and increase the information set. The results of the second experiment are shown in
Fig. 1. During both experiments, the KM-DTW model shows better results. In the third
experiment, we measure the ability of the KM-DTW model to cluster imbalanced datasets
by generating multiple datasets with imbalanced samples in the cluster. The results are
provided in Fig. 2. In the fourth experiment, we measure the ability of the KM-DTW model
to cluster overlapping clusters. We constrain the norm of the parameters of the GARCH(1,1)
model and evaluate the KM-DTW model. The experiment shows that KM-DTW is highly
dependent on the norm of the generated parameters. The results of the fourth experiment
are shown in Fig. 3.

We hope that our findings can motivate scholars to examine the discussed issues related
to clustering accuracy, cluster overlapping, and available information effect. We think that
already designed GARCH-based clustering methods have the potential to overcome these
problems, so it is important to conduct similar experiments to show this. Moreover, as a
direct application of our findings, it is worth applying clustering algorithms to the real-world
financial dataset.
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²Ù÷á÷áõÙ

Ðá¹í³ÍáõÙ Ù»Ýù ·Ý³Ñ³ïáõÙ »Ýù ÙÇ ù³ÝÇ Ùá¹»ÉÝ»ñÇó ³ÝÏ³Ë ÏÉ³ëï»ñÇ½³óÇ³ÛÇ
³É·áñÇÃÙÝ»ñÇ GARCH åñáó»ëÝ»ñáí ·»Ý»ñ³óí³Í Å³Ù³Ý³Ï³ÛÇÝ ß³ñù»ñÇ ïíÛ³ÉÝ»ñÇ
ÏÉ³ëï»ñ³íáñÙ³Ý áõÝ³ÏáõÃÛáõÝÁ: È³ÛÝ³Í³í³É ÷áñÓ»ñÇ ÁÝÃ³óùáõÙ Ù»Ýù ·»Ý»ñ³óÝáõÙ
»Ýù ëÇÝÃ»ïÇÏ ïíÛ³ÉÝ»ñÇ Ñ³í³ù³ÍáõÝ»ñ ï³ñµ»ñ ëó»Ý³ñÝ»ñáí: ²ÛÝáõÑ»ï¨,
Ù»Ýù Ñ³Ù»Ù³ïáõÙ »Ýù K-Means Ùá¹»ÉÝ»ñÁ (¾íÏÉÇ¹»ëÛ³Ý ¨ Å³Ù³Ý³ÏÇ ¹ÇÝ³ÙÇÏ
÷áË³Ï»ñåÙ³Ý Ù»ïñÇÏ³Ý»ñáí), K-Shape ¨ Kernel K-Means Ùá¹»ÉÝ»ñÇ ï³ñµ»ñ
ÏÉ³ëï»ñ³ÛÇÝ ã³÷ÇãÝ»ñáí: ØÇ ù³ÝÇ ÷áñÓ»ñÁ óáõÛó »Ý ï³ÉÇë, áñ K-Means Ùá¹»ÉÁ
Å³Ù³Ý³ÏÇ ¹ÇÝ³ÙÇÏ ÷áË³Ï»ñåÙ³Ý Ù»ïñÇÏ³Ûáí óáõÛó ¿ ï³ÉÇë Ñ³Ù»Ù³ï³µ³ñ ³í»ÉÇ
É³í ³ñ¹ÛáõÝùÝ»ñ: ²ÛÝáõ³Ù»Ý³ÛÝÇí, ¹Çï³ñÏí³Í Ùá¹»ÉÝ»ñÝ áõÝ»Ý ½·³ÉÇ Ã»ñáõÃÛáõÝÝ»ñ
ÇÝýáñÙ³óÇ³ÛÇ (Å³Ù³Ý³Ï³ÛÇÝ ß³ñùÇ Ýí³½³·áõÛÝ »ñÏ³ñáõÃÛáõÝÁ) ù³Ý³ÏÇ ³í»É³óÙ³Ý
Ñ»ï ÏÉ³ëï»ñ³íáñÙ³Ý ×ß·ñïáõÃÛ³Ý µ³ñÓñ³óÙ³Ý Ñ»ï Ï³åí³Í, ÇÝãå»ë Ý³¨
ïíÛ³ÉÝ»ñÇ ³ÝÑ³í³ë³ñ³ÏßéáõÃÛ³Ý Ï³Ù ÏÉ³ëï»ñÇ Ñ³ÙÁÝÏÝÙ³Ý ¹»åùáõÙ ×ß·ñÇï
ÏÉ³ëï»ñ³íáñáõÙ Çñ³Ï³Ý³óÝ»Éáõ Ñ³ñóáõÙ:

´³Ý³ÉÇ µ³é»ñ` Å³Ù³Ý³Ï³ÛÇÝ ß³ñù»ñÇ ÏÉ³ëï»ñÇ½³óÇ³, GARCH åñáó»ëÝ»ñ,
Å³Ù³Ý³ÏÇ ¹ÇÝ³ÙÇÏ ÷áË³Ï»ñåáõÙ, K-Means, K-Shape.
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Ñðàâíåíèå áåçìîäåëüíûõ àëãîðèòìîâ êëàñòåðèçàöèè
GARCH-ïðîöåññîâ

Ãàðèê Ë. Àäàìÿí

Åðåâàíñêèé ãîñóäàðñòâåííûé óíèâåðñèòåò, Åðåâàí, Àðìåíèÿ
e-mail: garik.adamyan@ysu.am

Àííîòàöèÿ

Â ýòîé ñòàòüå ìû îöåíèâàåì íåêîòîðûå áåçìîäåëüíûå àëãîðèòìû êëàñòåðèçàöèè
íàáîðîâ äàííûõ âðåìåííûõ ðÿäîâ, ñãåíåðèðîâàííûõ GARCH ïðîöåññàìè. Â
îáøèðíûõ ýêñïåðèìåíòàõ ìû ãåíåðèðóåì ñèíòåòè÷åñêèå íàáîðû äàííûõ äëÿ
ðàçëè÷íûõ ñöåíàðèÿõ. Çàòåì ìû ñðàâíèâàåì ìîäåëè K-Means (ñ ìåòðèêàìè
åâêëèäîâîé è äèíàìè÷åñêîé òðàíñôîðìàöèè âðåìåííîé øêàëû), ìîäåëè K-
Shape è Kernel K-Means ñ ðàçëè÷íûìè ìåòðèêàìè êëàñòåðèçàöèè. Íåñêîëüêî
ýêñïåðèìåíòîâ ïîêàçûâàþò, ÷òî ìîäåëü K-Means ñ ìåòðèêîé äèíàìè÷åñêîé
òðàíñôîðìàöèè âðåìåííîé øêàëû äàåò ñðàâíèòåëüíî ëó÷øèå ðåçóëüòàòû.
Îäíàêî ðàññìîòðåííûå ìîäåëè èìåþò ñóùåñòâåííûå íåäîñòàòêè â ïîâûøåíèè
òî÷íîñòè êëàñòåðèçàöèè ïðè óâåëè÷åíèè êîëè÷åñòâà èíôîðìàöèè (ìèíèìàëüíîé
äëèíû âðåìåííîãî ðÿäà), à òàêæå ïðè íåñáàëàíñèðîâàííîñòè äàííûõ èëè
ïåðåêðûòèè êëàñòåðîâ.

Êëþ÷åâûå ñëîâà: êëàñòåðèçàöèÿ âðåìåííûõ ðÿäîâ, ïðîöåññ GARCH,
äèíàìè÷åñêàÿ äåôîðìàöèÿ âðåìåíè, K-Means, K-Shape.
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Abstract

1. Introduction

Nowadays, deep neural networks are becoming more and more popular to solve problems
in various domains, including safety-critical areas such as medicine, self-driving cars, etc.
Unfortunately, techniques to fool deep learning models have recently come out to provide
incorrect outputs [1]. Particularly, in the image classification domain, an attacker can create
an altered image, which will be misclassified by a model but will be classified correctly by a
human. This altered image is often referred to as an adversarial example, and this process
as an adversarial attack. To be protected against such attacks, researchers try to create
methods to make the models more robust against such perturbations. Studying adversarial
attacks and their potential helps us develop better countermeasures against them.

In this paper, we will discuss some of the adversarial algorithms and test them against an
image classification model. We then compare the results of the experiments in terms of their
misclassification rate, targeted misclassification rate, attack duration, and imperceptibility.

42

Today, neural networks are used in various domains, in most of which it is critical
to have reliable and correct output. This is why adversarial attacks make deep neural
networks less reliable to be used in safety-critical areas. Hence, it is important to
study the potential attack methods to be able to develop much more robust networks.
In this paper, we review four white box, targeted adversarial attacks, and compare
them in terms of their misclassification rate, targeted misclassification rate, attack
duration, and imperceptibility. Our goal is to find the attack(s), which would be
efficient, generate adversarial samples with small perturbations, and be undetectable
to the human eye.
Keywords: Adversarial Attacks, Robustness, Machine Learning, Deep Learning.
Article info: Received 26 April 2022; received in revised form 4 July 2022; accepted
29 July 2022.
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In poisoning attacks, the attacker tries to insert fake samples (i.e., data samples with
wrong labels) into the training dataset, which will make the model learn on those fake
samples and output wrong results. This kind of attack is possible when the attacker has the
means to import those fake samples into the training set. In contrast, in evasion attacks,
the attacker does not need access to the dataset. In this case, the attacker creates adversarial
samples, which are similar and hard to distinguish by a human from the original samples
but are misclassified by the trained model.

Based on how much information the attacker has about the model, attacks can be classified
into white-box, black-box, and gray-box attacks. In thewhite box scenario, the attacker has
full knowledge about the model architecture and uses this knowledge to generate adversarial
examples. In contrast, in the black-box setup, the attacker does not know the architecture.
Instead, the attacker observes the output of the model from the given input. Some of the
attacks assume access to the soft labels (i.e., probability or likelihood score of belonging to
a class), while others try to generate examples based on only hard labels (i.e., class labels
without the score). In the gray-box setting, the attacker has an access to the original model
and trains a generative model on it. When the generative model is ready, the attacker uses
that model to generate adversarial samples. Hence, the original model is no more needed.
Recently, in [2] another category was introduced, called no-box attacks. In contrast to
black-box attacks, the attacker cannot query the model, instead, he has a small number of
samples from the same domain as the victim. The authors train an auto-encoder on those
samples and then generate the adversarial examples using the features learned from the
auto-encoder.

In the targeted attack, the attacker tries to misclassify the given sample into a specific
target label. In contrast, in non-targeted attacks, the attacker tries to classify the sample
into any other class.

In this paper, we try to overview some of the adversarial attack techniques and, running
experiments in the same setting, compare them based on:

• Misclassification: What percentage of the adversarial samples were misclassified

• Targeted Misclassification: What percentage of the adversarial samples were
successfully misclassified to the target class

• Imperceptibility: How much the adversarial example looks like the original image

• Duration of the attack: How long it takes to generate an adversarial example

1.1 Definitions and Notations

1.1.1 Poisoning Attacks vs Evasion Attacks

1.1.2 Attacker’s Knowledge of the Model

1.1.3 Targeted vs Non-Targeted Attacks

1.2 Our Goal and Contribution
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In this paper, we will concentrate only on white-box and target attacks. In particular,
we will discuss and experiment with the Fast Gradient Sign Method [1], Projected Gradient
Descent [3], AutoPGD [4], and FW + Dual LMO [5]. We chose these attack methods as
FGSM is one of the first and simplest methods, which is still popular today. PGD is the
most popular, as even many new state-of-the-art methods are modified versions of the PGD
attack. AutoPGD, being one of those variations, achieves state-of-the-art results according
to the authors. And while these attacks use ℓp norms, we also chose FW + Dual LMO as
an example of an attack that uses another norm (Wasserstain norm in this case).

2. Attack Mechanisms

In this section, we will briefly overview the attacks, which will be used for experimentation
further in the paper.

In our attacks, we are given a set of input images x ∈ Rn×n, and our goal is to craft
an adversarial example x′ ∈ Rn×n that will be misclassified by the deep learning model F :
Rn×n → N. Since we are discussing targeted attacks, we want to misclassify the adversarial
sample into our desired target class t ∈ N instead of the original class y ∈ N. Furthermore,
the perturbation we add to the image should be as small as possible, not to be detected by
a human. So, we can formulate the problem in the following way: Given a Neural Network
F : Rn×n → N, input image x ∈ Rn×n with a label y ∈ N, a distance function || · || and a
perturbation budget ϵ ∈ R find an x′ ∈ R such that

F (x′) = t ̸= y
s.t. ||x′ − x|| ≤ ϵ.

(1)

In our case, the distance functions will be l1, l2, l∞ distances or the Wasserstein distance.

Since we can access the gradients of the network in the white-box setting, what most of the
gradient-based attacks do, is to fix the network weight and maximize the loss by updating
the image. For that, they add a small perturbation η ∈ Rn×n to the original image:

x′ = x+ η

The most efficient way to maximize the loss would be to add noise in the same direction as the
gradients. [1] introduced an attack method, where they do exactly that: add a perturbation
in a direction that will increase the loss function L between the adversarial example and the
original label

x′ = x+ ϵ · sign(∇xL(θ, x, y)). (2)

We can see that in this way the maximum allowed perturbation is added, while still being
in the ϵ ball.

For a targeted setting, the update step will become:

x′ = x− ϵ · sign(∇xL(θ, x, t))

in other words, a perturbation is added to minimize the loss between the adversarial sample
and the target class t.

2.1 Fast Gradient Sign Method (FGSM)
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The Projected Gradient Descent attack (PGD) or Basic Iterative Method (BIM) was
introduced in [3], where they transformed the FGSM [1] one-step attack into an iterative one
by performing the update step (2) multiple times with a small step size α ∈ Rn×n. This will
work better, as the FGSM adds the maximum allowed perturbation, but does not guarantee
to maximize the loss within the allowed ϵ−ball. In contrast, in an iterative approach, the
algorithm is more likely to find the maxima. To ensure that the adversarial sample remains
in the ϵ neighborhood, PGD projects the sample back to the ϵ ball after each update step.
In other words, it performs projected gradient descent (or ascent) on the input sample. The
update steps for targeted and untargeted attacks will be as follows:

x(i+1) = Πϵ(x
(i) + α · sign(∇x(i)L(θ, x(i), y))) (3)

x(i+1) = Πϵ(x
(i) − α · sign(∇x(i)L(θ, x(i), t))) (4)

So, the attacker tries to find a perturbation that either finds the maximum loss between x′

and y (3) (untargeted attack), or the minimum loss between x′ and t (4) (targeted attack).

It has recently been suggested [4] that the Cross-Entropy loss and the fixed step size of the
PGD attack [3] may be two reasons for its potential failure. They propose an alternative
loss function and a new gradient-based method, Auto-PGD, which does not require a fixed
step size.

They divide their method into two phases: an exploration phase and an exploitation
phase. During the exploration phase, they search for good initial points, while in the
exploitation phase, they try to maximize the accumulated knowledge. The step size value
depends on the trend of optimization. If the objective function decreases rapidly, then the
step size does not need to be changed, otherwise, if it decreases slowly, the step size is
reduced.

The Wasserstein adversarial attack was introduced in [6]. Here they proposed to use the
Wasserstein distance instead of the commonly used ℓp distances. For images, the Wasserstein
distance can be seen as the cost of redistributing pixel mass. For example, while rotations
change ℓp norms dramatically, they only slightly change the Wasserstein distance.

So, what their algorithm does, is to do a PGD attack [3], but instead of projecting on
an ℓp norm, they project on the Wasserstein ball. However, since the projection onto the
Wasserstein ball is computationally expensive, they make an approximation by performing
modified Sinkhorn iterations [7].

[5] improved the algorithm by introducing an exact but still efficient projection operator.
They also introduce an adversary generating method based on the Frank-Wolfe [8] method
equipped with a suitable linear minimization oracle and show that it works very fast for
Wasserstein constraints.

In this paper, we will use that Frank-Wolfe method (FW + Dual LMO) for the
experiments.

2.2 Projected Gradient Descent

2.3 Auto-Projected Gradient Descent

2.4 Wasserstein Attack



46 A Brief Comparison Between White Box, Targeted Adversarial Attacks in Deep Neural Networks

In this experiment, our goal is to run FGSM [1], PDG [3], AutoPGD [4], and FW + Dual
LMO [5] attacks on the same environment and compare them in terms of misclassification,
targeted misclassification, attack duration, and imperceptibility.

We are performing our experiments on a pre-trained ResNet-18 [9] classifier on the CIFAR-
10 dataset [10], with initial 92.4% accuracy on the test set. We generate the adversarial
examples on a server with an Nvidia GeForce GTX 1080-Ti GPU.

We use the Adversarial Robustness Toolkit (ART) [11] for FGSM [1] and PGD [3] and
AutoPGD [4] attacks, and the original implementation by the authors for FW + Dual LMO
[5]. We run each of the adversarial attacks with a set of epsilon values in ϵ ∈ (0, 0.5] and
for all target classes. We use ℓp norms for FGSM, PGD, and AutoPGD, and we use the
Wasserstein distance for the FW + Dual LMO. All the other hyper-parameters are left to
their default values. For the FW + Dual LMO, in the original implementation, there was no
option for targeted attacks. Hence, we modified their implementation and added the option
for target attacks. For that we converted the problem:

maximize L(F (x′), y)
subject to ||x′ − x|| ≤ ϵ

to

minimize L(F (x′), t)
subject to ||x′ − x|| ≤ ϵ

We log the duration of the attack, the misclassification rate, and the targeted
misclassification rate for later comparison. The source code for the experiment can be found
https : //github.com/bezirganyan/adversarialarenahere.

We first look at the average misclassification and targeted misclassification scores that each
of our models was able to achieve for some ϵ ∈ (0, 0.5]. In Table 1, we can see average
misclassification and targeted misclassification rates for the best epsilon of each attack. As
we can see from the ℓp attacks, the ℓ∞ norm yields the highest scores in our setup. Hence,
from now on we will use the ℓ∞ norm for further comparisons. Note that this does not mean
that the ℓ∞ norm is better since we could get similar scores and similar perturbations for
higher ϵ values under other norms, as the ℓ∞ attack will add a higher amount of perturbation
under the same epsilon.

Furthermore, we can see that from the ℓp attacks in terms of targeted misclassification
rate, the PGD, and AutoPGD attacks yield very high scores leaving the FGSM attack behind
with a huge margin. In general, PGD and AutoPGD attacks behave almost identically in

3. Experiments

3.1 Goal

3.2 Setup

4. Results

4.1 Targeted Misclassification and Misclassification Rate
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our experiments. We hypothesize that this is because we are testing on an undefended
model, on which they both reach their maximum potential limit. The developers of the
ART framework confirmed that on their tests on defended models in an untargeted setting,
AutoPGD behaved slightly better. We, hence, plan to test and compare the models on a
defended model in our future work. In Fig. 1, we can see the Misclassification and Targeted
misclassification rates of the attacks for different epsilons and under the ℓ∞ norm. We can see
that in terms of misclassification and targeted misclassification rates the PGD and AutoPGD
attack perform best within the ℓp attacks by having around 90% misclassification rate even
for very small epsilon.

Fig. 1. Average misclassification and targeted misclassification rates for different ϵ values

under ℓ∞ and Wasserstein (FW) norms.

Furthermore, we can see that for the FGSM attack, the targeted misclassification does
not increase monotonically. The reason for this can be that since the FGSM is not an
iterative algorithm and performs just one step, it overshoots when the epsilon is too big and
misses the target class.

The FW+Dual LMO attack performs best in terms of both misclassification and targeted
misclassification rates. Nevertheless, we cannot compare the amount of perturbation under
ℓ∞ and Wasserstein norms, since they imply different amounts of changes to the image.
Hence, we will need to combine these results with the visual ones to be able to make a fair
comparison.

In Table 2, we can see the time duration needed to generate an adversarial example. Being
a simple one-step attack, FGSM leads the competition followed by the PGD and AutoPGD

4.2 Duration
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Table 1: Average misclassification and average targeted misclassification rates for different
norms

attack norm miscl targ. miscl.

AutoPGD ℓ1 0.0832 0.1100

PGD ℓ1 0.0810 0.1086

FGSM ℓ1 0.0879 0.1116

AutoPGD ℓ2 0.8968 0.9977

FGSM ℓ2 0.6157 0.3914

PGD ℓ2 0.8927 0.9925

AutoPGD ℓ∞ 0.9000 1.0000

FGSM ℓ∞ 0.9149 0.5515

PGD ℓ∞ 0.9022 1.0000

FW was 0.9000 1.0000

attacks. PGD, which performs much better than FGSM in terms of targeted misclassification
rate, is around 71 times slower. The slowest is the FW + Dual LMO attack, which performs
around 400 times slower than the FGSM attack.

In Table 2, we can see the time duration needed to generate an adversarial example. Being
a simple one-step attack, FGSM leads the competition followed by the PGD and AutoPGD
attacks. PGD, which performs much better than FGSM in terms of targeted misclassification
rate, is around 71 times slower. The slowest is the FW + Dual LMO attack, which performs
around 400 times slower than the FGSM attack.

Table 2: Duration of generating an adversarial example in seconds.

FGSM PGD AutoPGD FW+Dual LMO
0.7 50 87 338

One of the most important aspects of Adversarial attacks is that they should be undetected
by the human eye. Hence, in this section, we study how detectable are the adversarial
samples generated by the attacks. To visualize the results, we chose the smallest ϵ for each
of our attacks, under which our model showed at least 80% misclassification. You can see the
visualizations in the Figures 2 and 3. We can see that in the examples generated by the FGSM
attack, although the original image is still well visible, the perturbation is easily detectable
to us. For PGD, AutoPGD, and FW + Dual LMO attacks, however, the perturbations are

4.3 Duration

4.4 Imperceptibility
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hardly visible. In fact, from Fig. 3 it is noticeable that PGD and AutoPGD attacks apply
small perturbations uniformly over the image. While the FW + Dual LMO attack perturbs
only small portions of the image, the perturbations are much more visible.

Fig. 2. Adversarial samples on an image with original label 4 (deer).

Fig. 3. Perturbations added to the image with original label 4 (deer).

5. Conclusion and Future Work

We compared different attack methods with different metrics. The champion of the
comparison is the PGD attack. Although being a very simple attack, it performs very well
in terms of misclassification and targeted misclassification rates, is fast, and is almost non-
detectable by the human eye in our experiments. AutoPGD, while yielding similar results, is
much slower, and hence, comes in second place in our comparison. FW + Dual LMO attack
performed very well in terms of duration, misclassification, and targeted misclassification
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rates, but the perturbations were much more noticeable. The FGSM attack was the fastest
with a high misclassification rate but came last in terms of imperceptibility.

Since we’ve covered only a small portion of attacks, we plan to extend the attack list by
adding more well-known or state-of-the-art methods and extend the experiment domain to
black-box attacks as well. Furthermore, we plan to test these attacks on a defended model
and compare their performances. Particularly, we are interested to see the difference between
AutoPGD and PGD attacks on a defended model.
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Àííîòàöèÿ

Ñåãîäíÿ íåéðîííûå ñåòè èñïîëüçóþòñÿ â ðàçëè÷íûõ îáëàñòÿõ, â áîëüøèíñòâå
èç êîòîðûõ âàæíî èìåòü íàäåæíûé è ïðàâèëüíûé âûâîä. Âîò ïîýòîìó
ñîñòÿçàòåëüíûå àòàêè äåëàþò ãëóáîêèå íåéðîííûå ñåòè ìåíåå íàäåæíûìè
äëÿ èñïîëüçîâàíèÿ â îáëàñòÿõ, ãäå áåçîïàñíîñòü èìååò ðåøàþùåå çíà÷åíèå.
Ñëåäîâàòåëüíî, âàæíî èçó÷èòü ïîòåíöèàëüíûå ìåòîäû àòàêè, ÷òîáû èìåòü
âîçìîæíîñòü ðàçðàáàòûâàòü ãîðàçäî áîëåå íàäåæíûå ñåòè. Â ýòîé ñòàòüå ìû
ðàññìàòðèâàåì ÷åòûðå ”áåëûõ ÿùèêà” - öåëåíàïðàâëåííûå ñîñòÿçàòåëüíûå àòàêè
è ñðàâíèâàåì èõ ñ òî÷êè çðåíèÿ ÷àñòîòû îøèáî÷íûõ êëàññèôèêàöèé, ÷àñòîòû
öåëåâûõ îøèáî÷íûõ êëàññèôèêàöèé, äëèòåëüíîñòè àòàêè è íåçàìåòíîñòè. Íàøà
öåëü - íàéòè àòàêè, êîòîðûå áûëè áû ýôôåêòèâíû è ãåíåðèðîâàëè áû
ñîñòÿçàòåëüíûå âûáîðêè ñ íåáîëüøèìè âîçìóùåíèÿìè è íå îáíàðóæèâàëèñü áû
÷åëîâå÷åñêèì ãëàçîì.

Êëþ÷åâûå ñëîâà: ñîñòÿçàòåëüíûå àòàêè, íàäåæíîñòü, ìàøèííîå îáó÷åíèå,
ãëóáîêîå îáó÷åíèå.
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Ùñó³Ïó³ÛÇÝ Ñ³ñÓ³ÏáõÙÝ»ñÁ Ý»ÛñáÝ³ÛÇÝ ó³Ýó»ñÁ ¹³ñÓÝáõÙ »Ý ³í»ÉÇ ùÇã Ñáõë³ÉÇ‘
µ³ñÓñ ³Ýíï³Ý·áõÃÛ³Ý Ù³Ï³ñ¹³Ï å³Ñ³ÝçáÕ ïÇñáõÛÃÝ»ñáõÙ: Ð»ï¨³µ³ñ, Ï³ñ¨áñ ¿
áõëáõÙÝ³ëÇñ»É Ñ³ñÓ³ÏÙ³Ý ÑÝ³ñ³íáñ Ù»Ãá¹Ý»ñÁ` ³í»ÉÇ Ï³ÛáõÝ ¨ ³Ýíï³Ý· ó³Ýó»ñ
Ùß³Ï»Éáõ Ñ³Ù³ñ: ²Ûë Ñá¹í³ÍáõÙ Ù»Ýù ùÝÝ³ñÏáõÙ »Ýù ãáñë ëåÇï³Ï?ïáõ÷áí,
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Abstract 

 
Unmanned aerial vehicles (UAVs, drones) and similar unmanned units are becoming 

more and more involved in various spheres, such as agriculture, emergency situations, 
battles, etc. however, in decision making there are still a lot they can be improved to avoid 

human direct involvement in those problems. 

To advance in the problem we develop tools to make UAV autonomously effective 
decision makers, particularly, able to analyze properly given situations and then 

according to assigned goals select appropriate strategies to achieve the goals. 

In the following work we aim to provide a solution for a single UAV which is able 
to discover units of interest, and select the target to track, manipulate or hit based on 

expert specified knowledge, as well as discuss further steps. 

Keywords:  Object, detection, Decision making, Combinatorial problems, Expert 

knowledge. 
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1. Introduction 

 

1.1. Problems of Space of UAV Involvements 

Involvement of programmatic solutions in various types of UAV-based environments, such 

as agriculture, emergency situations, battles, and other types of urgent problems, is important and 

actual problem. 

Representation of problems can vary from one to another, while given situation for UAV-

based solutions may stay in scope of the following list: maps, emergencies, opponents, their 

positions, etc. 
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Overall, it is becoming very important to avoid human involvement in these tasks directly to 

avoid human causalities, to provide descent support and amount of units involved, thus it is 

important having decision making modules. 

A non-expensive UAV which is able to process the field situation as an image from the top, 

and make decisions based on the current situation without human involvement is an urgent 

problem. The advantage of such unit is that it can cost low and has pretty high accuracy and 

effectiveness. 

 

1.2. Programmatic Improvements of UAV Units 

Various tasks can be considered in this space, including: 

1.2.1. The tasks of adequate processing of situations. The program has to properly capture 

and parse the current situation based on retrieved data, mostly from images. This is currently not 

fully solved, however there are some available solutions for certain types of such tasks, e.g. 

detecting units of interests, such as emergency areas, e.g. fire sources on the images, etc. 

Such solutions require: 

a. sufficient preliminary inherited knowledge and ongoing data related to the units on the 

field to be recognized, particularly the ones to identify the own and opponent units, targeting items, 

tracking objects, etc. 

b. proper training and examining the functionality of target models in performing parsing of 

situations and recognizing there all valuable units (the mistakes might be very costly depending 

on the problem). 

1.2.2. Making valuable decisions in situations UAV can:  

a. analyze them to select with respect to (wrt) the goals the most prospective and 

simultaneously available ones 

b. select plans of attaining those targets 

c. analyze compositions of actions, strategies for the perspective plans 

d. make evaluation of the strategies and perform appropriate strategies to attain the goals. 

 

1.3. To examine our approach, we concentrate on the topic for a battle field strategy games G, 

which provide good way to track situation from the top (similar to UAV images). 

We consider this as a problem of certain combinatorial RGT class, where the space of 

solutions is reproducible game trees [1-8]. 

 RGT problems are specified as follows: 

• there are (a) interacting actors (players, competitors, etc.) performing (b) identified types 

of actions in the (c) specified types of situations; 

• there are identified utilities, goals for each actor; 

• actions for each actor are defined 

• the scope of solutions at the situations are fully determined by them (i.e., are identified as 

games with perfect information) 

Actors perform their actions in specified periods of times and do affect situations by actions 

in time t by transforming them to new situations in time t+1 trying to achieve the best utilities on 

that situation (goals) by regularities defining these actions. 

For example, a way to interpret battle field game G as the RGT problem is: 

1. The battling sides can be considered as interacting actors 

2. Military units’ movements, attacks can be considered as actions 

3. The battle field area including military units can be considered as the situations 

4. Different situations can be considered as goals: capture objects, destroy enemy 

units, push frontline. 

5. The analysis of given situations are sufficient for selection of proper strategies 
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1.4. Advances of RGT Solvers 

1.4.1. There are certain important advances and achievements in cognizers (RGT Solvers) 

[7] development: 

In it was shown that RGT problems are reducible to each other, particularly, to some standard 

kernel RGT problem K, say, chess, thus, we get an opportunity to integrate the best-known 

achievements in solving particular RGT problems into RGT Solvers letting us to apply those 

achievements to any of RGT problem [1].  

In RGT solutions, we follow the research lines of Botvinnik, Pitrat, Wilkins and ones 

successfully started since 1957 in the Institute for Informatics and Automation Problems at the 

Academy of Sciences of Armenia and based on modeling of expert approaches involving: 

knowledge bases, knowledge-based algorithms of decision making and matching situations to 

classifiers, as well as algorithms of revealing and modifying knowledge. 

The advances in RGT [1-10] include the following: 

1. Solutions for transforming situations for RGT problems, a solution for chess is 

available. “Generals: Command and Conquer” game is considered as a sample battlefield problem 

and positive results were achieved for recognition of military units. 

2. Knowledge presentation and matching algorithms were developed generally for 

RGT problems and adequacy was experimented for chess, marketing and other RGT problems. 

3. Planning and decision-making algorithms, IGAF and PPIT (including TZT) based 

on Botvinnik’s ideas were developed and tested for network intrusion protection problems and 

chess problems. Additionally, partial implementation of PPIT algorithms were integrated in 

general RGT Solver and experimented for chess and other RGT problems. 

Various urgent combinatorial problems were investigated as RGT problems including 

network protection from hacker intrusions [1], single ship defense from various types of attacks 

[6, 7], chess [2, 4], etc.  

 

1.5. We aim to resolve some of above-mentioned tasks by providing programs for UAV, i.e., 

autonomously effective decision makers, or agents, particularly for type of games G that will allow 

to process properly situations of G, then according to assigned goals select appropriate strategies 

for achieving the goals. 

In the current work we concentrate on the following problems: 

a. From the input images from UAVs detect and classify units of the game G 

influential for attaining the goals   

b. From the input situation including already classified influential units select target 

to hit. 

 

2. Units’ detection, classification 

 

Classification of influential units is performed via the recorded images. Popular object detection 

and image classification methods are now widely based on machine learning solutions, particularly 

deep convolutional neural networks, e.g. in the following an approach for vehicle detection from 

aerial images is discussed [11]. 

In the following we also rely on ML solutions to train a model for influential units’ detection and 

classification. 

 

2.1. Creation of Classification Dataset 

Based on analysis of available data, we collected influential unit images and videos. From the 

collected data images were revealed to describe influential units for training the model. We made 
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a grouping of some classes of influential for game G units into one class, later to be classified as 

the same. This allows to have much less classes and possibly higher detection rate. The created 

dataset mostly consists of aerial photos, because UAVs mostly take pictures that way. 

We have selected 8 groups of influential for game G classes, then created dataset consisting of 

their aerial images. 

 

2.2. Preparation of Detection Model 

 

Once we have the images as discussed in above section, we prepare it for training models. In the 

case of the game G unit’s detection, the model needs both accuracy and speed, but it is more 

essential to draw accurate detection conclusions. Some of the studies reveal that YOLO provides 

better detection and speed combination over other models in various problems, providing real time 

detection ability [11-16]. Based on the available results we use YOLOv5 as a model to be used for 

our dataset training and detection. 

The trained model gave results of accuracy with the values as follows: detection precision about 

80%, recall is close to 60-70% and mAp about 60. The summary is in Fig. 1. 

 

3. Selection of The Target 

 

As described in Introduction chapter we are relying on the achievements of RGT to provide 

decision making solutions in such problems, particularly the solutions rely on expert knowledge. 

Here it comes to finding out the knowledge pieces needed in decision making in the game G and 

specifically for selection a target for UAV managing as we concentrate our attention to that specific 

game G in the current work. 

The experts’ analysis and descriptions the following nuclear types [2] of knowledge for game G 

were revealed. 

For the targeting influential units: 

1. The class of the G units as classified in section 2, can be reduced to a value in range of 

{1-8} for each class having a specific value. 

Fig. 1 Metrics of Training Results. 
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2. The price of the unit. This is not the actual cost of the unit, but the price of the unit in the 

battle, describing how much can its damage be. So we assign this a rule of {1-8} range 

depending on the type of target. 

3. Other types of expert knowledge also participate in decision making, based on which the 

decision becomes more accurate. 

For own UAV: 

1. It also contains specific types of knowledge, in this case this is related to the managing 

abilities, the decision realization instruments type and power, which determine the target 

to be resolved. 

Based on the following nuclear classifiers we construct classes of units that appear as possible  

 

targets [2, 9]. In the tasks we only consider decisions relevant to the game G by the UAV as our 

own action. So, the simplified version of goal searching algorithms [2, 10] is applied here. First 

non-perspective targets are filtered out in the situation. Then by unit price the prioritization is 

applied and, with some additional corrections the target is selected. 

Because the situation is changing, the selected target on each situation can be different.  

To increase the confidence of correct selection of the targets, in sequential situations the same 

logic of target selection is applied several times.  

If examined target is confirmed, the confidence is increasing. With attaining certain confidence in 

certain time period, the target is locked on. 

3. Above we discussed the basic approach and some of applied knowledge descriptions for the 

selection of the targets.  

The model of detection of influential units and its metrics were provided in section 2. 

Knowledge-based approach adequacy has been discussed in [2, 8, 9]. 

The performance and the efficiency of programs realizing our UAV approach are attributed as 

follows: 

a. The program is developed in python programming language to provide easy and fast 

transitions between various experimenting environments. 

b. To improve efficiency of the program, when the target is selected, it is only tracked without 

its recurring detection and matching. 

Fig. 2. The Flow of Target Selection Algorithm. 
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c. Once target is locked on, the program calculates and provides the direction for hitting it. 

d. The efficiency of the program is experimented with various video inputs with different 

frame update rate: frames per second (FPS), resolution, the program provides close to real 

time results: for HD and FullHD videos with 20-25 fps the program is able to achieve close 

to real time performance.  

e. The prepared program and its performance were tested low power-consuming and GPU 

enhanced devices, which may be a good fit for UAV setup. 

 

4. Future Works 

The current solutions demonstrate the positive results of the work, as well as provide background 

for the future steps. 

The next steps of the current works are: 

1. The accuracy of the detection of game G units affects the whole flow of target selection 

and situation processing, decision making, thus improvement of detection is one of 

essential topics, also due to possible fatal problems in actual application mistakes. For 

this step we go on the following direction: 1.1. Enhancement of the dataset with new 

images, 1.2. Enhancement of dataset by machine learning solutions, such as data 

augmentation, 1.3. Applying machine learning techniques to improve quality of the input 

1.4. If the amount of data is sufficient, then classify exact types of units instead of 

grouping them. 

2. Enlarging the scope of considered situation. This assumes enhancing the knowledge for 

matching situations, which can help in properly selection targets, provide more than one 

type of actions for involved other than the given single UAV own units, specifying 

separate targets for own units and the sequence for targets to be hit. The enhancement of 

knowledge of the experts is an essential part in making decisions and improvement of 

decision with the increase of expert knowledge is demonstrated in [9], while integration 

of knowledge-based decision-making algorithms provided in [2, 10] also demonstrated 

their adequacy. 

This provides a good background for using the solutions in real UAVs. 

 

 

5. Conclusions 

 

In the following work an approach to describe battle field problem is discussed, where a way to 

formalize the problem is given. The following results were achieved: 

1. From open sources many photo and video data were analyzed, and images were revealed 

to create a dataset of G units. The dataset consists of 8 classes, each of them containing a 

group of units functionally equal to the ones defined by experts, to achieve an acceptable 

accuracy in detection. 

2. YOLOv5 model was used for training a model to detect the selected classes, and the results 

of model performance were demonstrated. 

3. By close cooperation with experts of that field certain types of knowledge to properly select 

the target to be hit were revealed. 

4. Algorithms to select the target based on input images, classified objects on that and the 

knowledge of the field are developed. 

5. Experiments were conducted for low power computing units and close to real time 

processing efficiency is achieved. 
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Relying on the results achieved in this work and achievements described in the field of RGT 

problems, we plan the next steps of the work as follows: 

1. Collect more data from available sources, enhance the existing dataset by machine learning 

tools. This allows to achieve better detection and classification accuracy, as well as makes 

it possible later to more detailed classification instead of grouping them. 

2. Enlarge the scope of included problems to consider also agricultural, emergency and other 

urgent applications, to provide certain types of actions based on decisions it makes using 

algorithms developed for RGT Solvers [2, 9, 10]. 

3. Enhance knowledge base for the problems based on expert knowledge to enable various 

types of actions, including ways of more appropriate target selections, target managing 

sequence selections, etc. 
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Ամփոփում 
 

Անօդաչու թռչող սարքերը (ԱԹՍ, դրոն), եւ այլ անօդաչու միավորները լայն 

կիրառում են ստանում են տարատեսակ կարեւոր ոլորտներում, ինչպիսիք են՝ 

գյուղատնտեսությունը, արտակարգ իրավիճակները, ռազմական խնդիրները եւ այլն, 

չնայած դրանց որոշումների կայացման եղանակներում դեռ կան լավարկման 

հնարավորություններ՝ խուսափելու համար մարդկային գործոնի ուղղակի 

ներգրավվածությունից։ 

Այսպիսի խնդիրներում առաջադիմելու նպատակով մենք մշակում ենք 

գործիքներ, որոնք հնարավորություն կտան ԱԹՍների կողմից ինքնուրույն 

արդյունավետ որոշումներ կայացնել, մասնավորապես՝ վերլուծելով ստեղծված 

իրավիճակը, ըստ հասցեագրված նպատակների մշակել ռազմավարություն՝ այդ 

նպատակներին հասնելու համար։ 

Այս աշխատանքում մենք ձգտում ենք տալ մի լուծում միայնակ ԱԹՍի համար 

լուծում, որը կհայտնաբերի իրավիճակում հետաքրքրություն ներկայացնող 

միավորները, դրանցից կընտրի թիրախ հետեւելու, խոցելու կամ այլ նպատակի 
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համար՝ հիմնված փորձագիտական գիտելիքների վրա։ Հաջորդիվ նաեւ բերվում են 

լուծման հետագա զարգացման քայլերը։ 

Բանալի բառեր՝ օբյեկտների հայտնաբերում, որոշումների կայացում, 

կոմբինատոր խնդիրներ, փորձագիտական գիտելիքներ: 

 

 

 

Разработка программ принятия эффективных  беспилотных 

решений 
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Аннотация 

 
Беспилотные летательные аппараты (БПЛА, дроны) и подобные беспилотные устройства  

наряду с возрастающим числом приложений в сельском хозяйстве, управлении при 

чрезвычайных ситуациях, например  боевых и т.д., требуют значительного 

усовершенствования эффективного принятия решений. 

Нами разрабатывается програмы, позволяющие, в частности,  анализировать ситуации, а 

затем в соответствии с поставленными целями выбирать подходящие стратегии для 

достижения целей. 

В работе представлены описание процедуры анализа ситуации для обнаружения целевых 

обьектов и их отслеживания, анализа версий решений  с использованием  наличных знаний 

эксперта,  выбора конкретной  цели  и принятия окончательного решения.   
Kлючевые слова:  обнаружение объектов, принятие решений, комбинаторные задачи, 

экспертные знания. 
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Abstract 

 
Hard-determinable property and balanced property of tautologies are specified as 
important properties in the study of proof complexities formerly. In this paper hard-
determinable and balanced properties are studied together. It is shown that some 
sequences of hard determinable balanced tautologies have polynomially bounded Frege 
proofs. 
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1. Introduction  
 
One of the most fundamental problems in proof complexity theory is to find an efficient proof 
system for classical propositional logic (CPL). There is a widespread understanding that 
polynomial time computability is the correct mathematical model of feasible computation. 
According to the opinion, a truly "effective" system should have a polynomial - size 𝑝𝑝(𝑛𝑛) proof 
for every tautology of size 𝑛𝑛. In [1] Cook and Reckhow named such a system a supersystem. They 
showed that 𝑁𝑁𝑁𝑁 = 𝑐𝑐𝑐𝑐𝑁𝑁𝑁𝑁 iff there exists a supersystem. It is well known that many systems are not 
super. This question about the Frege system, the most natural calculi for propositional logic, is still 
open. In many papers, some specific sets of tautologies are introduced, and it is shown that the 
question about polynomial bounded sizes for Frege proofs of all tautologies is reduced to an 
analogous question for a set of specific tautologies. In particular the hard-determinable tautologies 
and  balanced tautologies are  introduced in [2,3] as such sets of specific tautologies. In this paper, 
the hard-determinable and balanced properties are studied together and it is shown that some 
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sequences of hard-determinable balanced tautologies have polynomial bounded Frege proofs. 
Using the notions and results of this paper and the results of [3-4] the above-mentioned statement 
of Cook and Reckhow can be rephrased as follows: 𝑁𝑁𝑁𝑁 = 𝑐𝑐𝑐𝑐𝑁𝑁𝑁𝑁 iff in some Frege system of CPL 
the proofs for all hard-determinable balanced formulas are polynomially bounded. 
 
2. Preliminaries 
 
To prove our main result, we recall some notions and notation.  We will use the  current concepts 
of the unit Boolean cube (𝐸𝐸𝑛𝑛), a propositional formula, a tautology, a proof system for CPL, and 
proof complexity. The particular choice of a language for presenting propositional formulas is 
immaterial in this consideration. However, because of some technical reasons we assume that the 
language contains propositional variables, denoted by small Latin letters with indices. Logical 
connectives ¬, &, ∨, ⊃, and parentheses ( , ). Note that some parentheses can be omitted in 
generally accepted cases. 
 
2.1. Hard-determinable and Balanced Tautologies 

Following the usual terminology we call the variables and negated variables literals.  
The conjunct 𝐾𝐾 (clause) can be represented simply as a set of literals (no conjunct contains a 

variable and its negation simultaneously).  
In [3] the following notion is introduced.  

We call each of the following trivial identities for a propositional formula ψ a replacement-rule: 
 

0&ψ = 0,   ψ&0 = 0,   1&ψ = ψ,  ψ&1 = ψ,  ψ&ψ = ψ, ψ&¬ψ = 0, ¬ψ&ψ = 0, 
0∨ ψ =ψ, ψ∨ 0=ψ, 1∨ψ =1, ψ∨1 =1, ψ∨ψ = ψ, ψ∨¬ ψ =1, ¬ψ∨ψ=1, 

0⊃ψ=1, ψ⊃0=¬ψ, 1⊃ψ =ψ, ψ⊃1=1, ψ⊃ψ =1, ψ⊃¬ψ = ¬ψ, ¬ψ⊃ ψ = ψ, 
¬0 = 1, ¬1 = 0, ¬¬ψ = ψ. 

Application of a replacement rule to certain word consists in replacing some its subwords, having 
the form of the left-hand side of one of the above identities by the corresponding right-hand side. 
Let 𝜑𝜑 be a propositional formula, let 𝑁𝑁 = {𝑝𝑝1,𝑝𝑝2, … , 𝑝𝑝𝑛𝑛} be the set of the variables of 𝜑𝜑, and let 
𝑁𝑁′ = �𝑝𝑝𝑖𝑖1 ,𝑝𝑝𝑖𝑖2 , … ,𝑝𝑝𝑖𝑖𝑚𝑚� (1 ≤ 𝑚𝑚 ≤ 𝑛𝑛) be some subset of 𝑁𝑁. 
 

Definition 1. Given 𝜎𝜎 = {𝜎𝜎1,𝜎𝜎2, … ,𝜎𝜎𝑚𝑚} ∈ 𝐸𝐸𝑚𝑚, the conjunct 𝐾𝐾𝜎𝜎 = �𝑝𝑝𝑖𝑖1
𝜎𝜎1 ,𝑝𝑝𝑖𝑖2

𝜎𝜎2 , … ,𝑝𝑝𝑖𝑖𝑚𝑚
𝜎𝜎𝑚𝑚�  is called 𝜑𝜑-

determinative if assigning 𝜎𝜎1 (1 ≤ 𝑗𝑗 ≤ 𝑚𝑚) to each 𝑝𝑝𝑖𝑖𝑖𝑖 and successively using replacement rules 
we obtain the value of 𝜑𝜑 (0 or 1) independently of the values of the remaining variables.  
 

Definition 2. We call the minimal possible number of variables in a 𝜑𝜑-determinative conjunct 
the determinative size of 𝜑𝜑 and denote it by ds(𝜑𝜑). 
 

By | 𝜑𝜑| we denote the size of the formula 𝜑𝜑, defined as the number of all logical signs 
entries in it. It is obvious that the full size of the formula, which is understood to be the number 
of all symbols is bounded by some linear function in |𝜑𝜑 |. 
 

Definition  3. For sufficiently large 𝑛𝑛 the tautologies 𝜑𝜑𝑛𝑛 are called hard-determinable if there is 
some constant c such that 𝑙𝑙𝑐𝑐𝑙𝑙|𝜑𝜑𝑛𝑛|𝑑𝑑𝑑𝑑(𝜑𝜑𝑛𝑛) → 𝑐𝑐 for 𝑛𝑛 → ∞.  

Definition  4. A formula 𝜑𝜑 is balanced if every propositional variable  occurring in 𝜑𝜑 occurs 
exactly twice, once positive and once negative. 
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Example 1. The tautologies 𝜑𝜑𝑛𝑛 = 𝑝𝑝1 ⊃ (𝑝𝑝1 ⊃ (𝑝𝑝2 ⊃ (¬𝑝𝑝2 ⊃ (… ⊃ (𝑝𝑝𝑛𝑛 ⊃ 𝑝𝑝𝑛𝑛) … ))))  
  are balanced. It is not difficult to see that 𝑑𝑑𝑑𝑑(𝜑𝜑𝑛𝑛) = 1, hence 𝜑𝜑𝑛𝑛 are not  hard-determinable.  

Example 2. The tautologies 𝑄𝑄𝑄𝑄𝑄𝑄𝑛𝑛 = 𝑉𝑉0≤𝑖𝑖≤𝑛𝑛&1≤𝑖𝑖≤𝑛𝑛�𝑉𝑉1≤𝑘𝑘≤𝑖𝑖𝑞𝑞�𝑖𝑖,𝑖𝑖,𝑘𝑘 ∨ 𝑉𝑉𝑖𝑖<𝑘𝑘≤𝑛𝑛𝑞𝑞𝑘𝑘,𝑖𝑖,𝑖𝑖+1�(𝑛𝑛 ≥ 1), are 
balanced. Put 𝑄𝑄𝑖𝑖,𝑖𝑖 = 𝑉𝑉1≤𝑘𝑘≤𝑖𝑖𝑞𝑞�𝑖𝑖,𝑖𝑖,𝑘𝑘 ∨ 𝑉𝑉𝑖𝑖<𝑘𝑘≤𝑛𝑛𝑞𝑞𝑘𝑘,𝑖𝑖,𝑖𝑖+1(𝑛𝑛 ≥ 1, 0 ≤ 𝑖𝑖 ≤ 𝑛𝑛, 1 ≤ 𝑗𝑗 ≤ 𝑛𝑛), then 𝑄𝑄𝑄𝑄𝑄𝑄𝑛𝑛 =
𝑉𝑉0≤𝑖𝑖≤𝑛𝑛(𝑄𝑄𝑖𝑖1&𝑄𝑄𝑖𝑖2& … &𝑄𝑄𝑖𝑖𝑖𝑖& … &𝑄𝑄𝑖𝑖(𝑛𝑛−1)&𝑄𝑄𝑖𝑖𝑛𝑛) and therefore 𝑑𝑑𝑑𝑑(𝑄𝑄𝑄𝑄𝑄𝑄𝑛𝑛). It is not difficult to see, 

that |𝑄𝑄𝑄𝑄𝑄𝑄𝑛𝑛| = 3𝑛𝑛2(𝑛𝑛+1)
2

− 1 |, hence 𝑄𝑄𝑄𝑄𝑄𝑄𝑛𝑛  are hard-determinable as well. 
 
2.2. Proof  Systems and Proof Complexities 
 
 Let us recall some notions from [1]. 
A Frege system  𝓕𝓕 uses a denumerable set of propositional variables, a finite, complete set of 
propositional connectives; 𝓕𝓕 has a finite set of inference rules defined by a figure of the form  
𝐴𝐴1𝐴𝐴2… 𝐴𝐴𝑚𝑚

𝐵𝐵
 (the rules of inference with zero hypotheses are the schemes of axioms); 𝓕𝓕 must be 

sound and complete, i.e. for each rule of inference 
𝐴𝐴1𝐴𝐴2… 𝐴𝐴𝑚𝑚

𝐵𝐵
  every truth-value assignment, 

satisfying 𝐴𝐴1𝐴𝐴2 … 𝐴𝐴𝑚𝑚, also satisfies 𝐵𝐵, and 𝓕𝓕 must prove every tautology. 
       In the theory of proof complexity two main characteristics of the proof are:  𝑙𝑙 – 
 complexity to  be the size of a proof (= the sum of all formulae sizes) and  𝑡𝑡 – complexity to 
 be its length (= the total number of lines). The minimal 𝑙𝑙 – complexity (𝑡𝑡 – complexity) of a 
 formula 𝜑𝜑 in a proof system Φ we denote by 𝑙𝑙𝜑𝜑Φ�𝑡𝑡𝜑𝜑Φ�.  

The polynomial equivalence (𝑝𝑝 − 𝑙𝑙 --equivalence, 𝑝𝑝 − 𝑡𝑡 --equivalence) of two proof 
systems by some proof complexity measure means that the transformation of any proof in one 
system into a proof in another system can be performed with no more than polynomial increase of 
proof complexity measure.  

It is well known that any two Frege systems are 𝑝𝑝 − 𝑙𝑙 -equivalent (𝑝𝑝 − 𝑡𝑡 -equivalent). 
        Let 𝑀𝑀 be some set of tautologies. 
 

Definition 5. We call the Ф-proofs of tautologies from the set 𝑀𝑀 𝑡𝑡 -polynomially (𝑙𝑙 – poly-
nomially) bounded if there is a polynomial 𝑝𝑝() such that 𝑡𝑡𝜑𝜑𝛷𝛷 ≤ 𝑝𝑝(|𝜑𝜑|)(𝑙𝑙𝜑𝜑𝛷𝛷 ≤ 𝑝𝑝(|𝜑𝜑|)) for all 𝜑𝜑 
from 𝑀𝑀. 
 
2.3. Former Results 
 

It was previously proven that  
a) tautologies without  hard-determinability condition have 𝑡𝑡 -polynomially (𝑙𝑙 - polynomially) 

bounded proofs in all systems of CPL [4],  
b) hard-determinability condition is sufficient (but not necessary) to obtain exponential lower  

bounds for both proof complexities of tautologies in  “weak” proof systems of CPL (Cut-
free sequent, Resolution, Cutting planes etc.) [4],  

c) hard-determinability condition is not sufficient for exponential lower  bounds of  proof 
complexities in Frege systems: for some examples of hard-determinable formulas the 𝑡𝑡 -
polynomially (𝑙𝑙 - polynomially)  bounded Frege-proofs  are given in [2]. 

Some proof systems of CPL (calculus of structures with deep inference rules), where the author 
considers only formulas in negation normal form, are studied in [3], where among the rest of the 
results it is proved that 
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a) the set of above mentioned balanced formulas 𝑄𝑄𝑄𝑄𝑄𝑄𝑛𝑛 have polynomially bounded proofs 
in   one of the studied system 𝑑𝑑𝐾𝐾𝑠𝑠, 

b) the relations between the proof complexities in the system 𝑑𝑑𝐾𝐾𝑠𝑠 and the Frege systems are 
unknown for the present.  
 

3. Main Result 
 

Let 𝐹𝐹 be some Frege system with inference rule modus ponens.  
 

Theorem 1. The 𝐹𝐹 -proofs of tautologies 𝑄𝑄𝑄𝑄𝑄𝑄𝑛𝑛 (𝑛𝑛 ≥ 1) are 𝑡𝑡-polynomially (𝑡𝑡-polynomially) 
bounded. 

To prove, we use the method of [2] for description of some polynomially bounded proof of 
𝑄𝑄𝑄𝑄𝑄𝑄𝑛𝑛 direct  in 𝐹𝐹 by reducing it to 𝐹𝐹 -proofs of well-known tautologies 
 

𝑁𝑁𝑄𝑄𝑁𝑁𝑛𝑛 = &0≤𝑖𝑖≤𝑛𝑛𝑉𝑉1≤𝑖𝑖≤𝑛𝑛𝑝𝑝𝑖𝑖𝑖𝑖 ⊃ 𝑉𝑉0≤𝑖𝑖<𝑘𝑘≤𝑛𝑛𝑉𝑉1≤𝑖𝑖≤𝑛𝑛�𝑝𝑝𝑖𝑖𝑖𝑖&𝑝𝑝𝑘𝑘𝑖𝑖�(𝑛𝑛 ≥ 1) 
 

presenting the Pigeonhole Principle . It is proved in [5] that the set of these formulas is t-
polynomially (𝑙𝑙- polynomially) bounded. 

  The following two auxiliary statements will be of use: 
 

Lemma 1. Given arbitrary formulas 𝛼𝛼, 𝛽𝛽, 𝛾𝛾, 𝛼𝛼𝑖𝑖, 𝛽𝛽𝑖𝑖, 𝛼𝛼𝑖𝑖𝑖𝑖 and 𝛽𝛽𝑖𝑖𝑖𝑖, the 𝐹𝐹-proofs of the following 
tautologies are 𝑡𝑡-polynomially (𝑙𝑙-polynomially) bounded: 
 

1) α ∨ α¯, 

2) (α ⊃ β) ⊃ ((β ⊃ γ) ⊃ (α ⊃ γ)), 

3) (β¯ ⊃ α) ⊃ (¯α ⊃ β), 

4) α1 ⊃ (α2 ⊃ (... ⊃ (αk ⊃ α1 &α2 &···&αk)...)) (k ≥ 2), 

5) α ∨ α¯ ⊃ β1 ∨···∨ βk∨α ∨ βk+1 ∨··· ∨ βk+r ∨ α¯ ∨ βk+r+1 ∨··· ∨ βk+r+t   
 (k ≥ 1, r ≥ 1, t ≥ 1), 

      6)  ¬(𝑉𝑉1≤𝑖𝑖≤𝑘𝑘&1≤𝑖𝑖≤𝑚𝑚𝛼𝛼𝑖𝑖𝑖𝑖) ⊃ &1≤𝑖𝑖≤𝑘𝑘𝑉𝑉1≤𝑖𝑖≤𝑚𝑚𝛼𝛼�𝑖𝑖𝑖𝑖  (𝑘𝑘 ≥ 1,𝑚𝑚 ≥ 1)  
      7)  &1≤𝑖𝑖≤𝑘𝑘(𝛽𝛽1𝑖𝑖⋁𝛽𝛽2𝑖𝑖) ⊃ ¬(𝑉𝑉1≤𝑖𝑖≤𝑘𝑘(�̅�𝛽1𝑖𝑖&�̅�𝛽2𝑖𝑖)) (𝑘𝑘 ≥ 1). 
 
The proof is obvious. 
 

Lemma 2.  Let 𝑄𝑄𝑖𝑖𝑖𝑖  and 𝑄𝑄𝑘𝑘𝑖𝑖 (0 ≤ 𝑖𝑖˂𝑘𝑘 ≤ 𝑛𝑛, 1 ≤ 𝑗𝑗 ≤ 𝑛𝑛) be the above denoted  subformulas of 
𝑄𝑄𝑄𝑄𝑄𝑄𝑛𝑛, then 𝐹𝐹-proofs of the formulas 𝑄𝑄𝑖𝑖𝑖𝑖 ∨ 𝑄𝑄𝑘𝑘𝑖𝑖 be 𝑡𝑡-polynomially (𝑙𝑙-polynomially) bounded. 

 
The proof follows from the fact of existence of some 𝑑𝑑 and 𝑚𝑚  (1 ≤ 𝑑𝑑 ≤ 𝑛𝑛, 1 ≤ 𝑚𝑚 ≤ 𝑛𝑛) such that  
𝑄𝑄𝑖𝑖𝑖𝑖 contains 𝑞𝑞𝑠𝑠𝑖𝑖𝑚𝑚 and 𝑄𝑄𝑘𝑘𝑖𝑖  contains ¬𝑞𝑞𝑠𝑠𝑖𝑖𝑚𝑚, and also from 1) and 5) of Lemma 1.  
From 6) of Lemma 1 we infer for the formula 𝑄𝑄𝑛𝑛 = 𝑉𝑉0≤𝑖𝑖≤𝑛𝑛&1≤𝑖𝑖≤𝑛𝑛𝑄𝑄𝑖𝑖𝑖𝑖 . 

Condition 1. The F-proofs of the formulas 
¬𝑄𝑄𝑄𝑄𝑄𝑄𝑛𝑛 ⊃ &0≤𝑖𝑖≤𝑛𝑛𝑉𝑉1≤𝑖𝑖≤𝑛𝑛¬𝑄𝑄𝑖𝑖𝑖𝑖 

are 𝑡𝑡-polynomially (𝑙𝑙-polynomially) bounded. 
Put 
 
                         𝑁𝑁𝑄𝑄𝑁𝑁𝑛𝑛’ = &0≤𝑖𝑖≤𝑛𝑛𝑉𝑉1≤𝑖𝑖≤𝑛𝑛¬𝑄𝑄𝑖𝑖𝑖𝑖 ⊃ 𝑉𝑉0≤𝑖𝑖<𝑘𝑘≤𝑛𝑛𝑉𝑉1≤𝑖𝑖≤𝑛𝑛¬(𝑄𝑄𝑖𝑖𝑖𝑖&¬𝑄𝑄𝑘𝑘𝑖𝑖)                          (1) 
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The formulas (1) are obtained from the 𝑁𝑁𝑄𝑄𝑁𝑁𝑛𝑛  by the corresponding substitutions. Hence, 

Condition 2. The 𝐹𝐹-proofs of the formulas (1) are 𝑡𝑡-polynomially (𝑙𝑙-polynomially) bounded. 
Let     

           𝐴𝐴𝑛𝑛 = 𝑉𝑉0≤𝑖𝑖<𝑘𝑘≤𝑛𝑛𝑉𝑉1≤𝑖𝑖≤𝑛𝑛(¬𝑄𝑄𝑖𝑖𝑖𝑖& ¬𝑄𝑄𝑘𝑘𝑖𝑖).       
 

Using conditions (1), (2), and item 2) of Lemma 1, we obtain 

Condition 3. The 𝐹𝐹-proofs of the formulas ¬ 𝑄𝑄𝑄𝑄𝑄𝑄𝑛𝑛 ⊃ 𝐴𝐴𝑛𝑛  are 𝑡𝑡-polynomially (𝑙𝑙-polynomially) 
bounded. 
 

From Lemma 2 and item 4) of Lemma 1 we have 

Condition 4. The F-proofs of the formulas 

𝐵𝐵𝑛𝑛 = &0≤𝑖𝑖<𝑘𝑘≤𝑛𝑛&1≤𝑖𝑖≤𝑛𝑛(𝑄𝑄𝑖𝑖𝑖𝑖⋁𝑄𝑄𝑘𝑘𝑖𝑖) 

are 𝑡𝑡-polynomially (𝑙𝑙-polynomially) bounded, and from item 7) of Lemma 1 it follows that the 𝐹𝐹-
proofs of the formulas ¬𝐴𝐴𝑛𝑛,𝑚𝑚  are 𝑡𝑡-polynomially (𝑙𝑙-polynomially) bounded as well. 

From the conditions (3), (4), and item 3) of Lemma 1 we have a t-polynomial (l-polynomial) 
bound for the F-proofs of 𝑄𝑄𝑛𝑛 .  
 

Corollary1. There are hard-determinable balanced formulas the F-proofs of which are t-
polynomially (l-polynomially) bounded. 
        
4. Conclusion 
 
Using the polynomial equivalence of different Frege systems [1], the above mentioned result of 
Cook and Reckhow can be rephrased as follows: 𝑁𝑁𝑁𝑁 = 𝑐𝑐𝑐𝑐𝑁𝑁𝑁𝑁 iff in some Frege system of CPL the 
proofs for all hard-determinable balanced formulas are polynomially bounded. 
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Դժվար-որոշելի բալանսավորված նույնաբանությունների 
արտածումների բարդությունները  

Ֆրեգեի համակարգերում 
 

Անահիտ Ա. Չուբարյան 

Երևանի պետական համալսարան 

e-mail: achubaryan@ysu.am 

 

Ամփոփում 

       Նախկինում նույնաբանությունների դժվար-որոշելիության հատկությունը և 
բալանսավորված լինելու հատկությունը առանձնացվել էին որպես կարևոր 
հատկություններ արտածումների բարդությունների ուսումնասիրություններում:      
Այս հոդվածոմ դժվար-որոշելիության և բալանսավորված լինելու հատկությունները 
ուսումնասիրվում են համատեղ: Ապացուցվել է, որ դժվար-որոշելի բալանսավորված 
նույնաբանությունների մեկ դասի համար արտածումները Ֆրեգեի համակարգերում 
բազմանդամորեն սահմանափակ են:   
Բանալի բառեր՝ դժվար-որոշելի նույնաբանություններ, բալանսավորված 
նույնաբանություններ, Ֆրեգեի համակարգեր, արտածման բարդությունների 
բնութագրիչներ: 

 

Сложности выводов трудно-определяемых балансированных 
формул в системах Фреге 

        
Аанаит А. Чубарян 

Ереванский государственный университет 
e-mail: achubaryan@ysu.am 

 
Аннотация 

 
        Ранее свойство трудно-определяемости и свойство балансированности тавтологий 
были выдлены как важные свойства в исследованиях сложностей выводов. В настоящей 
статье свойства трудно-определяемости и балансированности изучаются совместно. 
Доказана полиномиальная ограниченность выводов в системах Фреге для некоторого 
класса трудно-определяемых балансированных формул. 
Ключевые слова: трудно-определяемые тавтологии, балансированные тавтологии, системы 
Фреге, характеристики сложностей выводов.   
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Abstract 

 
The paper presents the results of a research of using transfer training of the 

capsule neural network to detect malware. The research was carried out on the basis of 

the source code of malware using the context-triggered piecewise hashing method. 

The source codes of malware were obtained from public sources of software. 

Verification of the capsule neural network learning results was carried out using a 
trained convolutional neural network, and publicly available sources of test to 

malware. The research was conducted on six types of malware. Software source code, 

part of capsule neural network training datasets, pre-trained capsule neural network, 
and full research are publicly available at https://github.com/T-JN  

Keywords: Capsule neural network, Context triggered piecewise hashing, Edit 

distance, Intrusion detection system, Transfer learning. 
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1. Introduction 

 

Malware injected into Infrastructure through zero-day vulnerabilities in network equipment is a 

huge cybersecurity problem. The network infrastructure (NI) protection architecture implies the 

construction of a multi-level, complementary security system. Part of the NI security design is an 

intrusion detection system (IDS).  

In the studies [1]-[5], the types of IDS, the ways of their application and the mechanisms of their 

work are considered in detail. «Classic» IDS can be classified as: 

 host-based IDS, that is detection of attacks on a specific network node, 

 network-based IDS, that is, detecting attacks on the network or its segment.  

Existing IDS that do not use machine learning (ML) in their functionality (both proprietary and 

open source) [6]-[9], have one common drawback: they all respond to the threat that is 

embedded in the rule sets. There is also a high probability of various false positives: (true 

positivе, true negative, false positive, false negative) [10]. Malware is the most common threat 

https://github.com/T-JN
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vector in most operating environments [11]. The IDS software ecosystem offers many utilities 

and application suites that can help collect signals from all types of network traffic [12]. 

For IDS operating without the use of ML at different levels of the Open System Interconnection 

(OSI) model [13], the task of detecting malware modifications was secondary. Basically, the task 

of detecting and neutralizing malware was assigned to antivirus software. But with the 

convergence of attacks at different levels of the OSI model and the emergence of software-

defined networks (SDN), new types of threats and possible attacks arise, the neutralization of 

which by «standard» methods is difficult [14]-[15]. New systematic approaches are required to 

solve these problems. With the increase in the growth of attacks built on the basis of ML and 

machine-to-machine (M2M), new threats to the NI also arise. The requirements for security 

systems are increasing. The convergence of system, network and cloud services increases both 

the «attack surface» [16] and the «attack space power» [17]. Of particular danger are attacks 

«designed» using ML [18]-[20]. Researchers are working on the application of ML to create and 

build a new type of IDS [21-25].  Unlike «classic» IDS, built on the basis of ML can be further 

trained, being in one way or another a malware generator [26]-[28]. At this stage, both 

conceptually new solutions in the field of ML application in IDS are being developed, as well as 

improvements to existing ones. The papers [29]-[32] consider the issues of using ML to create 

one or another type of IDS. Researchers and developers of ML-based IDS are faced with a large 

number of tasks that need to be solved, due to the novelty of this area of information security. 

 The task of having annotated data for training a neural network (Annotation is the 

process of labeling raw data so that it can become training for machine learning [11]). No 

algorithm can handle really bad data. There are many different requirements for training 

datasets, in particular, representativeness and «noiselessness». [33]. Unlike neural 

networks that process images, sound, text, etc., for which there are verified datasets [34]-

[39], datasets for training an IDS must to some extent, consist of malware. Researchers 

have access to certain resources that supply research malware [40]-[46], but these 

resources make them public with a delay. 

 The task of increasing the learning rate of IDS built on the basis of ML. Unlike other 

neural networks where the main attention is paid to the quantity and quality of training 

data, in intrusion detection systems built on the basis of ML, in many cases, the speed of 

learning is also important. As shown in [47], since the emerging malware not included in 

any database has a different data distribution compared to the original training samples, 

the efficiency of model detection will decrease when it encounters new malware. 

 The task of correctly calculating the degree of threat in an attack using ML [48]. When 

developing an IDS based on ML, it is necessary to correctly calculate the degree of threat 

to the protected NI. 

  In addition to general tasks, there are also specific tasks։ since each group and type of malware 

requires its own specific detection methods [49]-[50]. 

 Detection based on signature analysis, where a database of malware hashes is used as a 

signature, 

 Detection based on Indicator of Compromise (IoC). It is a set of artifacts based on which 

malware can be detected: registry branches, loadable libraries, IP addresses, byte 

sequences, software versions, date and time triggers, ports involved [51]. 

 Research based on context triggered piecewise hashing (CTPH), (context triggered 

piecewise hashing is a method of calculating piecewise hashes from input data [52]). 

Malware developers use various techniques to change the original malware signature to 

make hashes harder to detect: encryption, obfuscation, reordering of files and libraries, 

re-distribution and code building in order to fool the detection system, giving malware a 
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new look and changing the hash values. In this case, malware remains undetected for 

some time [53].  

Various researchers are considering the use of CTPH techniques for malware detection. In [54], 

the issue of applying transfer learning to solve the problem of malware domain bias is 

considered, and in [55], the issue of automatic malware family identification and classification 

through online clustering is considered. But the main issues of preparing malware datasets and 

training IDS based on ML remain open.The issue of increasing the performance of an IDS based 

on ML with a small set of training datasets remains relevant. In this paper, a method for applying 

transfer learning of a capsule neural network with the calculation of CTPH and edit ing distance 

to increase the learning rate and detection of malware is investigated. The Levenshtein method 

[56] (Equation 1) and the method using the ssdeep program [57] were chosen as the 

mathematical apparatus for calculating the editorial distance. To assess the quality of binary 

learning, the Matthews correlation (Equation 2) [58] was used. The source codes of the malware 

for creating a set of annotated datasets were taken from open sources. The following malware 

was used: mimikatz, athena, engrat, grum, surtr, dyre. 

 

                                  𝐷(𝑖, 𝑗) =

{
 
 
 

 
 
 
0,                                                       𝑖 = 0, 𝑗 = 0
𝑖,                                                       𝑗 = 0, 𝑖 > 0 
𝑗,                                                       𝑖 = 0, 𝑗 > 0  
min {                                                                        

               𝐷(𝑖, 𝑗 − 1) + 1, 𝑗 > 0, 𝑖 > 0

           𝐷(𝑖 − 1, 𝑗) + 1 +𝑚(𝑀[𝑖], 𝑁[𝑗]),
}                                                         

                            (1) 

 

Levenshtein editorial distance calculation equation, 

  where, 𝐷 - the editorial distance, 𝑀, 𝑁- the length of strings obtained as a result of CTPH over 

some alphabet (in this case HEX), 𝑖 - remove step from the first line, 𝑗-insert into the first line. 

 

 

                                𝜙 =
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 ,                                   (2)     

 where, 

 𝜙 - Matthews correlation 

 𝑇𝑃 - true positive,   

 𝑇𝑁 -true negative, 

 𝐹𝑃 -false positive, 

 𝐹𝑁 - false negative. 

A capsule neural network was chosen as a transfer learning model. The choice of the capsule 

network is due to the following reasons: 

                        

 the capsule network does not require a large amount of training data, which is critical for 

this research, 

 the capsule network explores hierarchical relationships, which allows detecting possibly 

probable versions, in the presence of a primary code (a fragment of the main code) of 

malware, 

 the capsule network allows searching even in obfuscated source code with a minimum 

malware representativeness value, 
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 the capsule network is the most easily adaptable to changing the learning algorithm 

compared to other neural networks. 

 

2. Diagrams of Neural Networks 

                 
                                         
                                     Fig.1. Diagram of a capsule neural network. 

 

 
The nonlinearity function of the capsule network is determined by (Equation 3) [59]. 

 

                                                             𝝂𝒊 =
||𝑠𝑖||

2

1 + ||𝑠𝑖||2
 
𝑠𝑖
||𝑠𝑖||

,                                                           (3)     

 

where, 𝑠𝑗- the result obtained in the previous step, 𝝂𝒊 - the result obtained after applying the non-

linearity. The left side of the equation performs additional compression, and the right side of the 

equation performs unity scaling of the output vector. 

       The trained convolutional neural network (Fig. 2) was chosen as a test to check the 

reliability of the output data. As «weight coefficients» of the convolutional neural network, the 

value of CTPH was calculated the used ssdeep software. 

 

 

 
Fig. 2. Diagram of a convolutional neural network. 
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Verification of the results obtained from both neural networks was carried out using 

public malware detection services [60]-[61]. The developed software algorithm is shown in 

Fig.3.  

 

 
Fig. 3. Algorithm of the developed software. 
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Algorithm operation: 

 
 Operations on the input data of the research.  

 The dataset generated from the malware source code was obfuscated using various tools [62]-

[63] and prepared for training a capsule neural network (dataset 1). 

 The same non-obfuscated dataset (dataset 2) generated from the malware source code was 

prepared to train a convolutional neural network.  

  A total of 1000 annotated datasets of various sizes (20.40, 80, 128, 256, 512, 1024 bytes) were 

prepared for mimikatz, athena, engrat, grum, surtr, dyre software. 
 

Steps 1, 2: input of the initial malware dataset into the trained neural networks and the 

conversion module, 
 

Step 3: converting the source dataset to javascript object notation (JSON) format and setting the 

CTPH step size, 
 

Step 4: calculation of the edit distance by the Levenshtein method, 
 

Step 5: computation CTPH using ssdeep software, 
 

Step 6: comparison of the values calculated by the Levenshtein method and using the ssdeep 

software, 
 

Step 7:filtering the training datasets of neural networks from «noise» (the full implementation of  

           this part of the algorithm is presented in [33]), 
 

Step 8: training capsular neural network, 
 

Step 9 training convolutional neural network, 
 

Step 10 compute the Matthews correlation and resize the training datasets. 

 
 

 𝜙 = −1 the received output data of both neural networks go beyond the value tolerance 

 𝜙 = 1  the resulting outputs of both neural networks are correct (within the permissible  

deviation value) 

 𝜙 = 0  the resulting output of both neural networks is random 
 

Steps 11, 12: reconfiguring the training datasets and resizinge the CTPH. 

 

Table 1 presents the results of calculating the value of CTPH and the editorial distance between 

the hashes of the obfuscated source code of mimikatz software using capsular, convolutional 

neural networks, as well as ssdeep software. 

Table 2 shows the results of calculating the value of the context-piecewise hash of the 

obfuscated compiled source code and the editorial distance between the hashes of the mimikatz 

software using capsular, convolutional neural networks, and also the ssdeep software. 

In the research, datasets used a comparison between files 20-40, 20-80, 20-128, 20-256, 20-

512, 20-1024 bytes, as well as combinations of 40-512, 40-1024, 128-512, 128 -1024 bytes for 

mimikatz, athena, engrat, grum, surtr, dyre malware. 
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 3. Results 
 
Table 1.The results of computing the value of CTPH and the editorial distance between the hashes of the 

obfuscated source code of mimikatz software 
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Percentage of 
malware 

samples 

computed using 

convolutional 

neural 

networks 

Percentage of 
malware 

samples 

computed 

using 

capsule 

neural network 

Training epoch Training epoch 

I II III I II III 

1.  
b9be58b87140f922969c 

905236829d2436c34400 

ef73afe0b3862206e112 

400dc97a6920c1240ca2 
36 10 4 2 9 8 19 39 

2.  
e1077e747c9486dce1bf 

da820c078fe300a901fb 

081cdfaf631a003a5a5d 

fa678b52af5c0eb2cbd3 
36 13 6 8 7 16 27 42 

3.  
d86c9ca3861e333dc337 

6fc5565943551389edd6 

72840526d3cecbba084e 

ef91aed9c52cd94855d5 
35 25 18 9 9 24 52 78 

4.  
bd72fda18edc004d5181 

b57e48a757ac2ed94444 

783e9520a25faca4f815 

2dfc092d7d67e359c5f6 
35 28 21 22 24 8 10 12 

5.  
8ab1d3267a46f953c73b 

4154b1a261a8e02493d8 

ad523321e582956d7b51 

e9f4bc3763d9305231dc 
30 11 3 7 3 34 54 82 

6.  
dc990c540fc50debf0cd 

c178101ab107acaef9fe 

f2ba969ed8f8ecc7ce57 

c54c39de5333cf0d6a8e 
36 23 11 16 21 16 28 65 

7.  
b137df3d2083c226f985 

c0494a9cef753034ac6d 

f7fd9ed34bc6ead485bd 

5e7c1b9f9f13f30fddba 
34 13 10 9 12 16 27 46 

8.  
9efa06fa6567be9554db 

5c351da39c9c084306e0 

f7fd9ed34bc6ead485bd 

5e7c1b9f9f13f30fddba 
33 21 15 15 17 31 46 79 

9.  
4f5ec65628d2bde662a4 

08854a41caea98c0f44f 

f5cd09b85a44df103b21 

ea9c4d02c564fcb19191 
35 64 32 30 42 38 37 48 

10.  
5329b04a348368967844 

f421453563001ad4ab89 

37a56e3a4acbef542099 

4c0d7864125e53f5aaa3 
36 22 8 11 16 27 48 61 

11.  
95a56dfdfd7c8550afb8 

ab2474916bb63e58bb15 

37a56e3a4acbef542099 

4c0d7864125e53f5aaa3 
33 16 12 13 15 27 41 68 

12.  
aececb9dccd29fd5dd9 

c0559ad62afb84af374b2 
51168e0c2ab45361cf05 
834a721cd4aba48098be 

34 19 11 12 18 36 49 73 

13.  
14791ec8ec19ca534367 

c54f008b8439eea89f09 

497a16d6dd757f05fb88 

4994c71bea880e87ad18 
35 11 18 29 25 37 49 68 

14.  
dbfb0b8c0a28ea8bade 

6306f9e8589ee1c310a39 

c6ca0e98e0a66c45838f 

b254aec474553850ab91 
34 16 14 21 29 52 58 71 

15.  
c91e176518b7e42450e2 

c28d45bf31a1b3178240 

7ad0cc0f4ba8c767fac7 

f0a4f7ec192b3a60ec9e 
36 18 16 19 28 29 43 68 

16.  
04b66940a08ac7adb0cd 

f19382a8169d0c256c09 

5db88a72cdcfe90ff987 

1eae5bf8d2b617d73b0a 
37 26 11 19 36 39 56 73 

17.  
67b4a269a360b994d776 

9e4b40220c8b59c219b0 

fa926a049a1d9d72126b 

d07f1a1b87326b5e355b 
34 41 27 11 29 26 58 61 

18.  
c2cdacd22e871ecef12b 

0cbc8caf4559eecfa084 

817c64fed50532e58dd2 

1a8812c65fe10a250bd0 
36 16 15 16 26 31 46 74 

19.  
4202fc70b1301ec50b1f 

64ca525de6d31825787d 

38bc177d79492834356f 

1cce4f9120599f41e952 
36 18 17 19 21 28 37 49 

20.  
20b5c47533cb97d72f9 

0895ea1ffe27695063e54 

818b59add29456248836 

864d46c146d9d930d8a2 
37 19 8 16 34 24 37 58 
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     In training epochs 1-3, the results of the capsular neural network are better than the results of 

the convolutional neural network and ssdeep software, except for file №4 in the dataset, which is 

included in the statistical error. 

 
Тable 2. The results of calculating the value of CTPH and editorial distance between hashes of the 

compiled mimikatz source code. 
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Percentage of 

malware samples 

computed using 

convolutional 
neural 

networks 

Percentage of 

malware samples 

computed using 

capsular 
neural network 

Training epoch Training epoch 

I II III I II III 

1.  
d7e4e9abedd0949b8bcf 

f30c7abbdad97b182be8 

51f028f6b078f51583e0 

a048d9bc577b6a4e17b9 
37 25 23 31 42 17 19 23 

2.  
2c0e9d614fab60e18bd4 

2e99659974a3d298a9ae 

7f966e5a707dd69c13b5 

de45c9765a9be437e642 
35 16 18 14 22 8 11 9 

3.  
f76606cb6fae082991eb 

271af5ab7629d592cb04 

fb96549631c835eb239c 

d614cc6b5cb7d295121a 
32 28 27 36 45 16 17 14 

4.  
14da593832768f0a08e8 

ecd46363936eef096dcc 

72ac7a00a3c2a0a825cd 

016d71b0d587c6cc3f46 
36 23 16 22 34 18 20 16 

5.  
7f01a23afa1bcecdfdbb 

25b953c4f15366eaba51 

35139ef894b28b73bea0 

22755166a23933c7d9cb 
37 37 34 41 48 27 29 23 

6.  
1ca12a53c82cdd508054 

bdcdbe5256ccdd44c13c 

918b1c05e576f4b90fce 

15a06bc3442d72852a3c 
35 48 44 53 61 34 31 28 

7.  
a7f0499bf3eb6180d4da 

748426822404e46dea13 

4759f2ba1ba20f493664 

dbf5e36c1a1ec0d75658 
36 15 11 13 12 8 2 3 

8.  
aec2a4accb7ca456a57a 

c4426e8f51c2e6a8b143 

902a2d132f213700b5de 

fbefe7567f68ca8e234a 
35 19 18 26 29 16 10 13 

9.  
582d2ceff8f4f493f3a9 

d45c71286255946a7d37 
b2fd9a1405ba74fc360e 
1784961176b2b88bf5c9 

37 39 28 48 57 25 23 12 

10.  
a25a87930b155282e138 

35142ad63cea1994d02d 

c47419fdd4d6f146e430 

64b9ddb859a250404500 
36 53 47 40 57 34 29 47 

11.  
2f7b14912dddcf7c1c7a 

ebb49955cb5bf0ab3257 

b521d7652866027a7e5b 

43c6269d7c81ffb5a86e 
36 28 30 37 44 14 19 23 

12.  
fd5fd2f7953cf5630f74 

c2933b378d4381367ddd 

9de4bfa1fdb6c90637d3 

5492ec14ee10a3967997 
33 56 49 53 67 42 48 34 

13.  
e88dac72cd8ac64360d9 

5fb15e8ea9aaa8794f8c 

1eb796fd1ff7dda036fc 

a37d0f31aab19dedab1a 
37 24 29 48 52 17 23 15 

14.  
efa91cc773ee2c32ba51 

2ffce8db8a3760bda564 

99828f68be57c53ff954 

5f79e32bdb36050bf93b 
32 19 27 29 37 13 18 28 

15.  
f9980d6122acf1bf54a6 

8e49d15507fbc3ce7c1f 

2400b40333821b00b5d0 

b67f20f5f0e30ebf02dd 
36 56 44 58 63 37 34 39 

16.  
c5d4d95ce32029e1150a 

20d2f836b7b2c6e49546 

dfb380d8b0709104c606 

978092c7164160f32887 
37 29 27 35 38 21 17 34 

17.  
5156507d0b07bd9eaafe 

56815e1a04a0eaa1a8e9 

bd951f174a8f0f211c62 

bc1869d69f581788ee59 
37 48 27 44 56 25 38 14 

18.  
14fd3fa5756432336c73 

656c76f4751aa6f707f9 

b9acd4446a9ee133799f 

a3d8f3e35e001c616776 
37 16 24 36 38 8 10 11 

19.  
f1d8238c9141f46246bf 

2193908b1be6f87b09f8 

f1513655d577bf56bcf86 

2b1851e66bb683d373c 
33 56 48 56 61 32 27 46 

20.  
50effcaad368f00bfc71 
2105a708ff917f9f95d0 

49a48ed249c7b82959aa 
85b9470938bbcc9c45cc 

36 36 27 38 46 16 28 31 
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    In epochs 1-3 of training for compiled software, the results of the capsule neural network are 

worse worse than the results of the convolutional neural network and ssdeep software. 

 

            
Fig. 4. CTPH results of the obfuscated mimikatz                 Fig. 5. CTPH results of obfuscated and compiled      

            source code.                                                                             mimikatz source code.                             

   The use of a convolutional neural network is not always justified, since the degree of detection 

is comparable to the degree of detection by ssdeep software. The use of a capsule neural network 

for malware detection is justified in the presence of the source code (even in an obfuscated state), 

since even after the first training epoch, the detection results are not worse (and in most cases 

better) than the detection results using ssdeep and a trained convolutional neural network. 

Tables 3 and 4 present the results of the studies of the operation of capsule and convolutional 

neural networks, based on datasets obtained from the obfuscated mimikatz source code with 

three training epochs and a variable block size of CTPH.   

 

Table 3. Number of detected threats. 
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) The number of samples detected and 

classified as threats on different 

sizes (20, 40, 128 bytes) and three 

epochs (I, II, III) of training by a 

capsule neural network  

The number of samples detected and 

classified as a threat at different 

sizes (20, 40, 128 bytes) and three 

epochs (I, II, III) of training by a 

convolutional neural network 

Number of 

detected but 

mismatched 

malware 

samples * 

CTPN size 

(byte) 
20 40 128 20 40 128 

Training 
epoch 

I II III I II III I II III I II III I II III I II III I II III 

100 100 7 7 9 11 13 12 12 15 18 3 3 4 4 6 6 9 10 1 - - 1 

200 200 10 11 11 12 14 16 17 17 21 5 4 6 6 8 5 8 5 6 - 1 2 

300 300 12 12 14 16 18 23 28 29 22 8 7 8 8 9 11 13 15 16 1 1 2 

350 350 12 13 15 15 16 18 21 26 25 7 7 11 10 12 18 16 18 19 2 2 3 

450 450 14 16 19 19 22 26 29 34 38 10 9 11 12 16 18 18 21 20 2 1 4 

500 500 14 16 18 19 21 27 29 33 36 11 10 13 16 15 15 17 19 19 2 2 4 

600 600 22 25 29 30 34 35 39 41 44 14 15 11 19 24 26 20 25 26 3 3 3 

800 800 37 41 46 48 52 55 57 57 60 22 26 27 29 34 37 39 44 45 5 4 6 

950 950 42 42 46 47 58 60 66 68 68 28 29 28 31 33 39 42 46 49 4 4 4 

1000 1000 42 43 47 50 51 59 61 65 69 34 33 35 30 35 39 49 52 55 5 6 3 
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*The number of detected but mismatched malware samples separately detected by both neural 

networks. These samples were output to a special dataset and verified by publicly available malware 

detection resources. 

                                                      
     Table 4. Number of detected threats. 

 

    Fig. 6 shows a report from the virustotal service when examining one of the mimikatz malware 

samples detected by neural networks. In particular, the virustotal service did not detect either the 

file type or whether CTPH (based on ssdeep) belongs to a particular type of malware. 

 

 
Fig. 6.Virustotal service report. 
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The number of samples detected and 

classified as a threat at different 

sizes (20, 40, 128 bytes) and three 

epochs (I, II, III) of training by a 

convolutional neural network 

Number of 

detected but 

mismatched 

malware 

samples * 

CTPN size 

(byte) 
256 512 1024 256 512 1024 

Training 

epoch 
I II III I II III I II III I II III I II III I II III I II III 

100 100 18 14 16 14 16 19 8 12 14 7 11 14 9 11 14 7 8 11 - 1 1 

200 200 18 12 12 14 18 19 11 13 10 3 4 3 5 8 11 5 9 14 1 1 2 

300 300 17 19 16 14 17 12 10 21 23 9 11 10 8 12 9 8 8 13 - 2 2 

350 350 18 18 21 18 21 23 23 27 27 9 15 17 12 18 14 14 11 12 2 2 3 

450 450 22 26 28 29 29 34 20 23 25 12 15 13 20 16 16 17 29 13 2 5 3 

500 500 23 24 29 31 33 30 28 21 32 16 12 15 22 22 25 28 26 25 3 7 7 

600 600 28 31 30 32 35 39 34 38 41 20 24 21 24 28 25 29 34 31 5 6 6 

800 800 37 37 39 41 46 39 42 46 49 31 28 34 34 25 27 39 32 34 7 9 11 

950 950 48 53 53 52 58 56 64 65 56 34 30 31 35 38 38 39 42 45 11 9 10 

1000 1000 47 52 51 56 61 60 64 66 68 40 42 46 42 44 44 47 49 51 8 11 12 
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Tables 5 and 6 present the results of the studies of the operation of capsule and 

convolutional neural networks, based on data sets from the obfuscated compiled code of the 

mimikatz software.                                                                      
Table 5. Number of detected threats. 

 
 Table 6. Number of detected threats 
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The number of samples detected and 

classified as a threat at different 

sizes (20, 40, 128 bytes) and three epochs 
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Number of 

detected but 
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malware 

samples * 

CTPN size 
(byte) 

20 40 128 20 40 128 

Training 

epoch 
I II III I II III I II III I II III I II III I II III I II III 

100 100 2 1 2 3 2 3 3 4 4 2 2 3 3 3 4 5 2 3 - - - 

200 200 3 2 3 3 4 2 2 3 3 1 1 2 2 3 2 4 3 4 - - - 

300 300 3 4 4 4 4 5 3 5 5 2 3 3 4 3 4 4 4 4 - - 1 

350 350 3 3 4 4 5 5 5 6 6 3 3 3 3 4 5 5 4 4 - 1 1 

450 450 4 5 5 5 6 6 6 8 9 3 4 4 4 5 6 5 7 7 - 1 - 

500 500 3 5 5 5 6 8 8 9 11 4 4 5 5 7 9 9 10 10 - 2 2 

600 600 5 6 6 6 8 9 11 11 12 5 4 7 7 9 11 10 11 10 1 1 1 

800 800 7 6 7 7 8 11 13 14 14 6 8 9 8 8 9 8 11 13 2 1 2 

950 950 9 9 10 11 9 11 12 15 15 8 10 10 11 13 15 14 15 17 2 2 3 

1000 1000 11 13 14 14 14 15 17 19 18 10 11 11 11 13 16 18 21 23 2 4 4 
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The number of samples detected and 

classified as a threat at different 

sizes (256, 512, 1024 bytes) and three 

epochs (I, II, III) of training by a 
convolutional neural network 

Number of 

detected but 

mismatched 

malware 

samples * 

CTPN size 
(byte) 

256 512 1024 256 512 1024 

Training 

epoch 
I II III I II III I II III I II III I II III I II III I II III 

100 100 9 11 12 12 14 14 15 16 16 8 8 10 11 13 12 11 11 10 - - 1 

200 200 10 12 13 14 13 13 15 15 12 11 10 11 12 11 13 12 13 14 - 1 1 

300 300 11 12 12 15 17 18 19 18 18 10 12 13 12 14 14 15 14 14 - - - 

350 350 11 11 12 12 12 16 15 11 14 14 12 13 15 15 15 18 19 21 - 1 2 

450 450 13 12 13 13 15 15 16 17 18 11 12 13 14 16 16 15 17 19 2 3 3 

500 500 12 14 14 14 15 14 15 11 12 11 10 11 13 14 12 15 15 16 - 1 2 

600 600 10 11 12 10 12 12 12 14 13 9 10 11 12 10 10 14 15 14 1 2 2 

800 800 12 14 15 15 16 17 17 18 18 16 14 15 15 16 17 18 21 19 2 3 3 

950 950 12 13 12 14 15 15 16 18 19 12 12 13 14 15 16 12 15 16 2 3 4 

1000 1000 12 12 13 13 15 16 16 17 18 11 10 12 15 16 17 18 19 20 2 2 3 
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Given the malware source code (or fragment), the capsule neural network performs better 

than the convolutional neural network in detecting obfuscated malware. But when compiled, the 

detection performance of the capsular neural network decreases. Also, both neural networks 

separately detected a small set of data and software fragments classified as malware. Figures. 

[7]-[12] show a visualization of the output data of a capsule neural network with 3 training 

epochs and CTPN datasets, 20, 40, 80, 128, 256, 512 bytes.  

    
    Fig. 7. Visualization of malware detection results            Fig. 8. Visualization of malware detection   

                by capsule neural network.                                                by capsule neural network.  
               (I training epoch, CTPH size 20 bytes)                              (I training epoch, CTPH size 40 bytes) 

   
    Fig. 9. Visualization of malware detection results               Fig. 10. Visualization of malware detection   

                by capsule neural network.                                                     by capsule neural network. 

               (II training epoch, CTPH size 80 bytes)                                 (II training epoch, CTPH size 128 bytes) 

   
    Fig. 11. Visualization of malware detection results              Fig. 12. Visualization of malware detection results  

                  by  capsule neural network.                                                     by capsule neural network.  

                  (III training epoch, CTPH size 256 bytes)                             (III training epoch, CTPH size 512 bytes)     
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With an increase in the size of the CTPH files (interval 256, 512, 1024 bytes) for training the 

capsule network, the increase in the detection of the number of malware code fragments is 

insignificant (0.3-0.5%, Fig. 7, Fig. 8, Table 6) in contrast to files 20 , 40, 128 bytes (12-14% 

increase). But increasing the size of the CTPH file allows increasing the editorial distance 

(Figure 9-12) to granularly group malware by type. 

  

4. Conclusion 

This paper proposes the use of transfer learning of a capsule neural network to detect obfuscated 

malware. Convolutional and capsule neural networks were trained on the same datasets. The 

source codes of mimikatz, athena, engrat, grum, surtr, dyre malware were used as datasets. 

When building an intrusion detection system using neural networks, their complex application is 

necessary. Annotated malware datasets are critical when training neural networks. The use of 

transfer learning of a capsule neural network to detect malware is justified if the source code of 

the malware or its fragments (preferably the first versions) is available. In this case, the neural 

network detects malware, even with its high degree of obfuscation. But in the absence of source 

code, the effectiveness drops, yielding to «standard» means of detecting malware. The use of the 

CTPH method for generating «weight» coefficients of a neural network is most effective with a 

small file size of CTPH. 

Increasing the editorial distance increases the selectivity of detecting different types of malware.  

 

 

References 

 
[1] D. Ashok Kumar and S. R.Venugopalan, “Intrusion Detection Systems: A Review” 

International Journal of Advanced Research in Computer Science, vol. 8, no 8, pp.356--

370, 2017. 

[2] O. Shelukhin, D. Sakalema and A.Filinov, Detection of intrusions into computer 

networks. Hot line-Telecom, 2018. 

[3] S. Survey and D. Usha, “A survey of intrusion detection system in IoT devices”, 

International Journal of Advanced Research (IJAR), vol 6, pp. 23-31, 2018. 

[4] H.Hindy et al., “A taxonomy of network threats and the effect of current datasets on 

intrusion detection system”, arXiv preprint arXiv:1806.03517, 2020. 

[5] Tuan-Hong Chua and Iftektar Salam, “Evaluation of machine learning algorithms in 

network-based intrusion detection system”, arXiv preprint arXiv:2203.05232, 2022. 

[6] Snort intrusion detection and prevention system official website. [Online]. Available  

https://www.snort.org/  

[7] Suricata intrusion detection and prevention system official website. [Online]. Available 

https://suricata.io/  

[8] Zeek an open source Network Security Monitoring tool system official website. 

 [Online]. Available https://zeek.org/  

[9] Cisco NGIPS system  web pages. 

[Online]. Available https://www.cisco.com/c/ru_ru/products/security/ngips/index.html  

[10] F.Maymi and S.Harrris, CISSP, Exam Guide, Ninth Edition, Mc Graw Hill, New York, 

San Prancisco, Singapore, Sydney, Toronto, 2022. 

[11] C. Chio and D. Freeman, Machine Learning and Security, O`Reilly® , 

Boston•Sebastopol• Tokyo, 2020.  

https://www.snort.org/
https://suricata.io/
https://zeek.org/
https://www.cisco.com/c/ru_ru/products/security/ngips/index.html


  Research of Obfuscated Malware with a Capsule Neural Network 80 

[12] M. Collins, Network Security. Through Data Analysis, O`Reilly® (DMK press), 2020. 

[13] ISO/IEC 7498-1, Second edition 1994-11-15. Corrected and reprinted, 1996. 

[14] MITRE ATT&CK® official website. [Online]. Available 

 https://attack.mitre.org/matrices/enterprise/  

[15] CVE cybersecurity web pages. [Online]. Available 

https://cve.mitre.org/index.html  

[16] OWASP Cheat Sheet Series. [Online].Available 
https://cheatsheetseries.owasp.org/cheatsheets/Attack_Surface_Analysis_Cheat_Sheet.html  

[17] A. Cheremushkin, “Cryptographig protocols: Main properties and vulnerabilites”, 

PDM , vol.2 appendix, pp.115-150, 2009. 

[18] T. V. Jamgharyan and V.H.Ispiryan, “Model of generative network attack”  

Proceedings of 13th International Conference on Computer Science and Information 

Technologies (CSIT), Yerevan, Armenia, pp. 90-94, 2021. 

[19] A. Ul Haq et al, “Addressing tactic volatility in self-adaptive systems using evolved 

recurrent neural networks and uncertainty reductions tactics”, arXiv preprint 

arXiv:2204.10308v1, 2022. 

[20] S. Das, “FGAN: Federated generative adversarial networks for anomaly detection in 

network traffic”, arXiv preprint arXiv:2203.11106v1, 2022.  

[21] Sk.Tanzir Mehedi, “Dependable intrusion detection system for iot: a deep transfer 

learning –based approach”, arXiv preprint arXiv:2204.0483v1,2022. 

[22] I. Panagiotis et al, “Securing the Smart Grid: A Comprehensive Compilation of 

Intrusion Detection and Prevention Systems”, DOI 10.1109/Access, 2017. 

[23] A. S. Dina et al , “Effect of balancing data using synhthetic data on the performance 

machine learning classifiers for intrusion detection in computer networks”, arXiv 

preprint arXiv:2204.00144v1,2022. 

[24] T.Nathuya and G.Suseendram, An Effective Hybrid Intrusion Detection System for Use 

in Security Monitoring in the Virtual Network Layer of Cloud Computing Technology, 

Springer Nature, Singapore, 2019. 

[25] E.Pelofske, “A robust cubersecurity topic classification tool”, International Journal of 

Network Security & Its Application (IJNSA), vol.14, № 1, pp. 1-25, 2022.  

[26] G.Renjith et al, “GANG-MAM: GAN based enGine for modifying android malware” 

arXiv preprint arXiv: 2109.13297, 2021. 

[27] F.Zhong et al, “MalFox: Camouflaged adversarial malware example generation based 

on Conv-GANs againist black—box detectors”, arXiv preprint arXiv: 2011.01509, 

2021. 

[28] B.E.Zolbayar et al, “Generating practical adversarial network traffic flows using 

NIDSGAN”, arXiv preprint arXiv: 2203.06694v1, 2022. 

[29] Md.Ariful Haqua, R.Palit, “ A review on deep neural network for computer network 

traffic classification”, arXiv preprint arXiv: 2205.10830v1, 2022. 

[30] D. Kus et al, “A false sense of security? Revisting the state of machine learning-based 

industrial intrusion system”, arXiv preprint arXiv: 2205.09199v1, 2022. 

[31] S.Layeghy and M. Portmann, “On generalisibility of mashnine learning-based network 

intrusion detection systems”, arXiv preprint arXiv: 2205.041112v1,2022. 

[32] S.Sohail et al, “Explainable and optimally configured artifical neural networks for 

attack detections in smart homes”, arXiv preprint arXiv:2205.080443v1,2202. 

[33]  T. Jamgharyan, “Research of the data preparation algorithm for training generative-

adversarial network”, Bulletin of High Technology, no. 19, pp. 40-50, 2022. 

[34] Kaggle datasets base website. [Online]. Available 

  https://www.kaggle.com/datasets  

[35] Registry of Open Data on AWS website.  [Online]. Available 

https://attack.mitre.org/matrices/enterprise/
https://cve.mitre.org/index.html
https://cheatsheetseries.owasp.org/cheatsheets/Attack_Surface_Analysis_Cheat_Sheet.html
https://www.kaggle.com/datasets


T. Jamgharyan  
 

81 

  https://registry.opendata.aws/ 

[36]  Public data sets for testing and prototyping. [Online]. Available 
   https://docs.microsoft.com/en-us/azure/azure-sql/public-data-sets?view=azuresql             

[37] Datasets base website. [Online]. Available 

   http://apolloscape.auto/  

[38] Datasets of overhead imagery. [Online]. Available http://xviewdataset.org/#dataset 
[39] Google open images dataset. [Online]. Available 

             https://ai.googleblog.com/2016/09/introducing-open-images-dataset.html  

[40] MalwareBazaar Database. [Online]. Available  https://bazaar.abuse.ch/browse/ 

[41] Malware database. [Online]. Available http://vxvault.net/ViriList.php 

[42] A free malware repository for researches. [Online]. Available https://malshare.com/ 

[43] Malware repository. [Online]. Available https://avcaesar.malware.lu/ 

[44] Malware repository. [Online]. Available https://www.virusign.com/ 

[45] Viruses repository. [Online]. Available https://virusshare.com/ 

[46] A live malware repository. [Online]. Available https://github.com/ytisf/theZoo 

[47] F.Wang et al, “An efficient unsupervised domain adaptation deep learning model for     

unknown malware detection”, International conference on security and privacy in new 

computing environments (SPNCE ), vol. 423, pp. 64 -76, 2022. 

[48] G. Pitolli et al, “MalFamAware: automatic family identification and malware 

classification through online clustering”, International Journal of information security 

vol. 20, pp. 371-386, 2021. 

[49] S. David, R. Anand, V. Jeyakrishnan and M Niranjanamurthy, “Security issues and 

privacy concerns in industry 4.0 applications”, Wiley, Beverly, 2021. 

[50] I. Priyadarshimi and R.Sharma, “Artifical Intelligency and Cybersecurity”, CRC Press 

Taylor&Francis Group, New York, 2022. 

[51] Encyclopedia by Kasperky. [Online].Available  

https://encyclopedia.kaspersky.ru/glossary/indicator-of-compromise-ioc/  

[52] Nettitude labs web site. [Online].Available  

https://labs.nettitude.com/blog/context-triggered-piecewise-hashing-to-detect-malware-

similarity/  

[53] S.Kumar and Sudhakar, “MCFT-CNN: Malware classification with-tune convolutional 

neural networks using traditional and transfer learning in IoT”, DOI 10.1016 

Future Generation Computer systems, vol.25 pp. 334-351, 2021. 

[54] C.Rong et al, “TransNet: Unseen malware variants detection using deep transfer 

learning”, International Conference on Security and Privacy in communication systems 

(LNICST) vol.336, pp.84-101, 2020.  

[55] R.Mortier et al, “Distributed data analysis”, arXiv preprint arXiv:.2203.14088.2021. 

[56] D.Pogorelov et al, “Comparative analysis of the Levenstein and Dameray-Levenstein 

edit distance algorithms”, Processing of Moscow State University after N.Bauman, vol. 

31, pp. 803-811, 2019.  

[57] ssdeep software project website. [Online].Available 

            https://ssdeep-project.github.io/ssdeep/index.html  

[58] Professional information and analytical resource dedicated to machine learning, pattern 

recognition and data mining. [Online].Available 
http://www.machinelearning.ru/wiki/index.php?title=%D0%9A%D0%BE%D1%80%D1%80%D0
%B5%D0%BB%D1%8F%D1%86%D0%B8%D1%8F_%D0%9C%D1%8D%D1%82%D1%8C%D1%8E
%D1%81%D0%B0  

[59]  Capsule networks paperspace. [Online]. Available  
  https://blog.paperspace.com/capsule-   networks/  

https://registry.opendata.aws/
https://docs.microsoft.com/en-us/azure/azure-sql/public-data-sets?view=azuresql
http://apolloscape.auto/
http://xviewdataset.org/#dataset
https://ai.googleblog.com/2016/09/introducing-open-images-dataset.html
https://bazaar.abuse.ch/browse/
http://vxvault.net/ViriList.php
https://malshare.com/
https://avcaesar.malware.lu/
https://www.virusign.com/
https://virusshare.com/
https://github.com/ytisf/theZoo
https://encyclopedia.kaspersky.ru/glossary/indicator-of-compromise-ioc/
https://labs.nettitude.com/blog/context-triggered-piecewise-hashing-to-detect-malware-similarity/
https://labs.nettitude.com/blog/context-triggered-piecewise-hashing-to-detect-malware-similarity/
https://ssdeep-project.github.io/ssdeep/index.html
http://www.machinelearning.ru/wiki/index.php?title=%D0%9A%D0%BE%D1%80%D1%80%D0%B5%D0%BB%D1%8F%D1%86%D0%B8%D1%8F_%D0%9C%D1%8D%D1%82%D1%8C%D1%8E%D1%81%D0%B0
http://www.machinelearning.ru/wiki/index.php?title=%D0%9A%D0%BE%D1%80%D1%80%D0%B5%D0%BB%D1%8F%D1%86%D0%B8%D1%8F_%D0%9C%D1%8D%D1%82%D1%8C%D1%8E%D1%81%D0%B0
http://www.machinelearning.ru/wiki/index.php?title=%D0%9A%D0%BE%D1%80%D1%80%D0%B5%D0%BB%D1%8F%D1%86%D0%B8%D1%8F_%D0%9C%D1%8D%D1%82%D1%8C%D1%8E%D1%81%D0%B0
https://blog.paperspace.com/capsule-%20%20%20networks/


  Research of Obfuscated Malware with a Capsule Neural Network 82 

[60]  Free service that analyzes malware. [Online].Available https://www.virustotal.com/  

[61]  Malware scanning platform. [Online].Available https://www.herdprotect.com/  

[62]  “Dotfuscator” software web pages. [Online].Available https://docs.microsoft.com/ru-

ru/visualstudio/ide/dotfuscator/capabilities?view=vs-2022  

[63]  “Guardsquare” software web site. [Online]. Available         

https://www.guardsquare.com/proguard  

 

 

 

 

Կապսուլային նեյրոնային ցանցով օբֆուսկացված վնասաբեր 

ծրագրային ապահովման հետազոտում 
 

Թիմուր Վ․ Ջամղարյան 
 

Հայաստանի ազգային պոլիտեխնիկական համալսարան 

e-mail: t.jamgharyan@yandex.ru 

 
Ամփոփում 

 

Ներխուժման հայտնաբերման և կանխարգելման համակարգերը ցանցային  

ենթակառուցվածքի անվտանգության ապահովման անբաժանելի բաղադրիչն են: 

«Դասական» ներխուժման հայտնաբերման և կանխարգելման համակարգերը չեն 

կարողանում հայտնաբերել այնպիսի սպառնալիքներ, որոնք նկարագրված չեն 

համակարգի կանոններում։ Բացի այդ, նաև բաց խնդիր է համարվում օբֆուսկացիայի 

ենթարկված վնասաբեր ծրագրային ապահովման հայտնաբերումը։  

Ծրագրային ապահովման և ցանցային ենթակառուցվածքի անվտանգությունով 

զբաղվող հետազոտողները, փորձում են նշված խնդիրը լուծել մեքենայական 

ուսուցման միջոցով։ Հետազոտությունում ներկայացված են փոխանցման ուսուցման 

մեթոդով ուսուցանված կապսուլային նեյրոնային ցանցի ցուցաբերած արդյունքները 

վնասաբեր ծրագրային ապահովման հայտնաբերելու հարցում։ Հետազոտությունը 

իրականացվել է վնասաբեր ծրագրային ապահովման ելակետային կոդի հիման վրա, 

կիրառելով համատեքստա-մասնատված հեշավորման մեթոդը։ Վնասաբեր 

ծրագրային ապահովման ելակետային կոդերը ստացվել են հանրահասանելի 

աղբյուրներից։ Կապսուլային նեյրոնային ցանցի ուսումնասիրության արդյունքները 

համեմատվել են նախապես ուսուցանված փաթույթային նեյրոնային ցանցի և 

վնասաբեր ծրագրային ապահովման հայտնաբերելու հանրահասանելի 

համացանցային ծառայությունների միջոցով։ Մշակված ծրագրային ապահովման 

ելակետային կոդերը, նախապես ուսուցանված մոդելը, տվյալների հավաքածուների 

մի մասը, հոդվածում չներառված հետազոտության արդյունքները հասանելի են 

https://github.com/T-JN կայքում։ 

Բանալի բառեր՝ կապսուլային նեյրոնային ցանց, անորոշ հեշավորում, 

ներխուժման հայտնաբերման համակարգ, խմբագրական հեռավորույուն, ցանցային 

ենթակառուցվածք: 

https://www.virustotal.com/
https://www.herdprotect.com/
https://docs.microsoft.com/ru-ru/visualstudio/ide/dotfuscator/capabilities?view=vs-2022
https://docs.microsoft.com/ru-ru/visualstudio/ide/dotfuscator/capabilities?view=vs-2022
https://www.guardsquare.com/proguard
https://github.com/T-JN


T. Jamgharyan  
 

83 

Исследование обфусцированного вредоносного программного 

обеспечения с помощью капсульной нейронной сети 
 

Тимур В. Джамгарян 

 
Национальный политехнический университет Армении 

e-mail: t.jamgharyan@yandex.ru 

 

 

Аннотация 

 
Системы обнаружения и предотвращения вторжений являются неотьемлимым 

компонентом безопасности сетевой Инфраструктуры. Классические системы обнаружения 

и предотвращения вторжений не в состоянии обнаружить угрозу не описанную в наборе 

правил. Также нерешенной полностью задачей является: задача обнаружения 

вредоносного программного обеспечения подвергнутого обфускации. 

Исследователи в сфере безопасности программного обеспечения и сетевой 

Инфраструктуры пытаются решить данные задачи с помощью машинного обучения.   

В работе представлены результаты исследования использования трансферного обучения 

капсульной нейронной сети для обнаружения вредоносного программного обеспечения. 

Исследование проводилось на основе исходного кода вредоносного программного 

обеспечения с использованием метода контекстно-кусочного хеширования. Исходные 

коды вредоносного программного обеспечения были получены из общедоступных 

источников программного обеспечения. Проверка результатов обучения капсульной 

нейронной сети проводилась с использованием обученной сверточной нейронной сети и 

общедоступных источников тестирования вредоносного программного обеспечения. 

Исходные коды разработанного программного обеспечения, часть наборов данных для 

обучения нейросети, результаты исследования не внесенные в статью представлены по 

адресу https://github.com/T-JN  

 Ключевые слова: капсульная нейронная сеть, нечеткое хэширование, система 

обнаружения вторжений, редакционное расстояние, трансферное обучение. 
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Data processing and persistence are key aspects of developing a Virtual 
Reality system. In this paper, an improvement is offered to the distance 
calculation algorithm of the Unity Engine. Additionally, data persistence 
mechanisms provided by the Unity Engine are reviewed, and File System is 
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1. Introduction 
 
In virtual reality, data is represented both in primitive types (int, float, string) and complex types 
provided by the engine. Object positions in space are determined in the Cartesian coordinate 
system [1] (see Fig. 1). 

A common task is to compare the distance of 2 points from a given point 𝐴𝐴(𝑥𝑥1,𝑦𝑦1, 𝑧𝑧1). 
The Unity Engine Scripting API [2] provides a complex data type called Vector3 to store object 
coordinates, along with its Vector3.Distance() method to calculate distance between 2 points. 
Given the points (𝑥𝑥2,𝑦𝑦2 , 𝑧𝑧2), 𝐶𝐶(𝑥𝑥3,𝑦𝑦3 , 𝑧𝑧3), this method may be used to accomplish the task, 
comparing the following values: Vector3.Distance(B, A), Vector3.Distance(C, A). 
A more efficient solution may be applied using the formula of the distance between 2 points [1]: 
 

 𝑑𝑑𝐴𝐴𝐴𝐴  = �(𝑥𝑥2 −  𝑥𝑥1)
2 + (𝑦𝑦2 −  𝑦𝑦1)

2 +  (𝑧𝑧2 −  𝑧𝑧1)
2, (1) 
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 𝑑𝑑𝐴𝐴𝐴𝐴  = �(𝑥𝑥3 −  𝑥𝑥1)
2 + (𝑦𝑦3 −  𝑦𝑦1)

2 +  (𝑧𝑧3 −  𝑧𝑧1)
2 (2) 

 
Instead of comparing values for 𝑑𝑑𝐴𝐴𝐴𝐴   and 𝑑𝑑𝐴𝐴𝐴𝐴  , the radicands may be compared, saving CPU 
time on unnecessary calculations. 
 

 
 

Fig. 1. Object positions in space. 
 

To have persistent data between sessions, the user progress has to be stored on the disk. 
There are several methods of managing data storage, including SQL database, PlayerPrefs and 
OS File System. On specific events during the runtime, which are to be defined, data containing 
all the current values have to be stored. These events may include user interaction, object state 
mutation, or events may be set to trigger on specific timestamps, e.g., every 10 seconds. Then, on 
the next program run, these stored values have to be fetched and transmitted to the engine to 
render the objects in the same state and position, as they were when the last event was triggered. 

 
 

2. Persistent Data 
 
To have persistent data between sessions, the user progress has to be stored on the disk. Below 
are listed several methods of managing data storage. 
 

1. SQL Database 

SQL is useful when there is relational data. It supports queries to fetch related data sets. In 
our case, we have just objects that need to be memorized and then retrieved on the next run. 
Such simple operations are easier to implement and faster in work on File System. SQL is a 
dedicated software and isn’t an integrated part of Operating Systems, as File System is. Also, 
a connection to SQL service should be kept active during the runtime. 
 
2.  PlayerPrefs 

PlayerPrefs is a class provided by Unity Engine that stores Player preferences between game 
sessions. It stores values in the OS registry. Though it is possible to store data using this 
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method, it is not recommended to do so. This method should be used for data, that can be 
afforded to lose, such as user settings and preferences. Sensitive and relatively big data 
should not be kept in registries. 
 
3. File System 

To store data in files, it needs to be formatted in some way. It may be serialized [3] to binary 
format and written to a file. That data will then be successfully deserialized and used in the 
application. But since binary is not human-readable, it makes this format insufficient. 
Moreover, it is not possible to edit the saved data manually. Using JSON data type allows 
bypassing these problems. 
 
Taking into account the points mentioned above, it was decided to handle data storage using 

File system and Serialization, so every time data needs to be stored, it is serialized to JSON 
format and written to a file (see Fig. 2). Then, to restore the state in the application, the file is 
read and data is deserialized to object (see Fig. 3). 

 

 
 

Fig. 2. Storing Data. 

 
 

Fig. 3. Using Stored Data. 
 
 
3. Saving Object Position 
 
A specific and common example is persisting the object position. In this example, we have a 
cube placed on a table (see Fig. 4). The Origin (0, 0, 0) can be located on the ground.  
 

 
 

Fig. 4. Cube. 
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To save the cube position after it is replaced, a class called SaveManager is created, 
which contains 2 methods: save and load. These methods use a file called "position.dat" to 
write/read data.  
SaveManager.cs 
public class SaveManager 
{ 
    public static void save(Vector3 pos) 
    { 
        string path = Path.Combine(Application.persistentDataPath, "position.dat"); 
        File.WriteAllText(path, JsonUtility.ToJson(pos)); 
    } 
 
    public static Vector3 load() 
    { 
        string path = Path.Combine(Application.persistentDataPath, "position.dat"); 
        string result = File.ReadAllText(path); 
        Vector3 pos = JsonUtility.FromJson<Vector3>(result); 
        return pos; 
    } 
} 

The save and load methods would then be invoked from a script, which is bound to the 
object. The save method would be bound to the XR Grab Interactable component [4] “Select 
Exited” event to save data every time the object is released. The load method would be invoked 
from the Start method to set object positions from the saved data on a fresh program run. 
CubeScript.cs 
public class CubeScript : MonoBehaviour 
{ 
    // Start is called before the first frame update 
    void Start() 
    { 
        Vector3 position = SaveManager.load(); 
        transform.position = position; 
    } 
 
    public void Save() 
    { 
        SaveManager.save(transform.position); 
    } 
} 
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Fig. 5. Cube position changed via left controller. 
 
The saved file position.dat: 
{"x":-0.0030583017505705358,"y":0.838373601436615,"z":-2.0934112071990969} 
After restarting the program, we still have the cube in its new place (see Fig. 5). 
Now we can modify this file content, and set the coordinates to (0, 0, 0). 
{"x":0,"y":0,"z":0} 
After modifying and saving the file, and running the program again, we can see that the cube 
appears on the Origin as expected (see Fig. 6). 
 

 
 

Fig. 6. Cube position manually set to Origin. 
 
4.  Conclusion 
 
In this article, an improvement to the Unity Engine distance calculation algorithm was suggested. 
Additionally, data types provided by the Unity Engine were reviewed. Data storage options were 
compared and decided to use the OS File System and data serialization. As an example, a cube 
position storage and loading were implemented. This method will be used also for custom 
complex data types to store, marking the class representing the data type as Serializable. 
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 Տվյալների մշակումը և պահպանումը վիրտուալ իրականության համակարգի 
զարգացման հիմնական ասպեկտներ են։ Այս հոդվածում առաջարկվում է Unity 
շարժիչի հեռավորության հաշվարկման ալգորիթմի լավարկում։ Բացի այդ, 
դիտարկվում են Unity շարժիչի կողմից տրամադրվող տվյալների պահպանման 
մեխանիզմները, և որպես նպատակահարմար տարբերակ, ընտրվում է ֆայլային 
համակարգը։ Իրականացվում է օբյեկտի կոորդինատների պահպանումը ֆայլային 
համակարգում։ Ստացված արդյունքները հիմք են հանդիսանում մասնագիտական 
հետազոտությունների վիրտուալ ստենդների ստեղծման համակարգի մշակման 
համար։ 
Բանալի բառեր՝ Վիրտուալ իրականություն, տվյալների կառավարում, ֆայլային 
համակարգ, սերիալիզացիա  
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Аннотация 
 

       Обработка и сохранение данных являются ключевыми аспектами разработки 
системы виртуальной реальности. В данной статье предлагается улучшение алгоритма 
расчета расстояний Unity Engine. Кроме того, рассматриваются механизмы сохранения 
данных, предоставляемые Unity Engine, и в качестве подходящего варианта выбирается 
файловая система. Реализуется хранение координат объекта в файловой системе. 
Результаты обеспечивают основу для разработки системы создания виртуальных 
стендов для профессиональных исследований. 

Ключевые слова: Виртуальная реальность, управление данными, файловая система, 
сериализация 
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Abstract 

 
The study aims to develop methods for automating network management by 

analyzing its virtual counterpart. The paper substantiates the relevance of this approach, 

identifies the advantages and disadvantages, highlights the existing problems, and 

suggests ways to solve them. As a result, the effectiveness of network virtualization was 
shown by the example of an experimental network. 
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1. Introduction 
 

The more devices are connected to the network, the more inconvenience there will be with the 

expenses of their utilization. And until the network system is automated, this problem will be 

constant. Organizations will spend a lot of money to buy powerful network devices, but network 

management will not become easier. That is why a study of network automation and 

virtualization was carried out, their current applications were discussed and solutions to existing 

problems were proposed. 

As network traffic continues to grow, companies increasingly require large-scale network 

configurations. The move to cloud computing continues as enterprise customers and their 

applications rely more and more on network efficiency, so networks are expected to be highly 

reliable with minimal downtime. As the number of devices on the network increases, so does the 

need for uninterrupted, flexible, fast, and efficient communication between them. To do this, it is 

necessary to obtain a large number of network devices that will be of a high quality, and have 

great features, such as a large amount of memory, many interfaces, and powerful processors, and 

all  this is associated with high costs, which is one of the main prerequisites for the emergence 

automation and virtualization concepts. 

For service providers, automation is a key strategy to improve network agility and reliability 

while controlling operating and capital costs. Therefore, it is necessary to automate the work 
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with network equipment. Automation of daily network tasks and functions, as well as automated 

monitoring of iterative processes, increases the availability of network services. 

We can describe the current state of the networking industry as "critical". The market-

dominant closed (proprietary) solutions are "boxes" for applications, and the interoperability of 

solutions from different vendors is best provided at the interface level. Networks are extremely 

complex, making them difficult to scale, manage, and trust. This slows down the further 

development of networks and programs running in them. Therefore, several solutions for 

network automation have been developed, and we talked about SDN in our research work. 

Software Defined Networking (SDN) introduces network virtualization capabilities, which 

makes it easier to build and manage network automation tasks. Using SDN, networks can be 

provisioned at the software layer, abstracting the underlying physical hardware. This takes 

automation to the next level and significantly accelerates network provisioning and configuration 

management. It also enables IT to attach network and security services to workloads using a 

policy-driven approach(see [1]). Today, network automation solutions allow us to perform a 

wide range of tasks, including network planning - design, including scenario planning - backup 

management, device testing - configuration testing, deployment of deployed physical devices - 

services, as well as virtual device deployment - provisioning devices, real-time network data 

collection systems related to applications, network topology, traffic, services, data analysis, 

including active artificial intelligence, machine learning analysis, to get an idea of the present 

and future, network behavior, check configuration compliance, to ensure all network devices and 

service requirements, software updates, including backing up software if necessary, fixing closed 

network issues, including troubleshooting, and complex, difficult-to-detect Troubleshooting 

activities, detailed analysis of reports, panels, alarms, warnings, compliance with security 

requirements, monitoring of the network and its services, service level to maintain customer 

satisfaction.  

The purpose of this article is to show the benefits of network virtualization, present the tools 

necessary for this, and show its effectiveness as a result of the experimental application. 

 

 

2․

Network automation through SDN (see [2]) adds a number of capabilities to conventional 

automation paradigms, which optimize IT resources and require    SDN as a networking 

architecture approach. It enables the control and management of networks using software 

applications. Through SDN networking, the behavior of the entire network and its devices is 

programmed in a centrally controlled manner through software applications using open APIs. 

SDN improves performance through network virtualization. In SDN[2] software-controlled 

applications or APIs work as a basis of complete network management that may be directing 

traffic on a network or communicating with underlying hardware infrastructure. So to put it 

simply, we can say that SDN can create virtual networks or  control traditional networks with the 

help of software to improve security and reduce cost.                                           

Traditional network refers to the old conventional way of networking, which uses fixed and 

dedicated hardware devices such as routers and switches to control network traffic. Inability to 

scale, as well as network security and performance are major concerns nowadays in the current 

growing business situation so SDN is taking control of traditional networks. The traditional 

network is static and based on hardware network appliances. Traditional network architecture 

was used by many companies until recent years but nowadays due to its drawbacks SDN has 

been developed and will be used more widely in the coming years(see [3]). 
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Table 1. Comparison of SDN to Traditional Network(see [3]). 
 

No SDN Traditional Network 

1 Virtual networking approach. Old conventional networking approach. 

2 Centralized control. Distributed control. 

3 Programmable network. This network is nonprogrammable. 

4 Open interface. Closed interface. 

5 

Data plane and control plane are 

decoupled by software. 

Data plane and control plane are mounted on 

the same plane. 

6 
It supports automatic configuration 

so it takes less time. 
It supports static/manual configuration so it 

takes more time. 

7 

It can prioritize and block specific 

network packets. 

It leads all packets in the same way with no 

prioritization support. 

8 It is easy to program as per need. 
It is difficult to program again and replace the 

existing program as peruse. 

9 The cost is low. The cost is high. 

10 Structural complexity is low. Structural complexity is high. 

11 Extensibility is high. Extensibility is low. 

12 
It is easy to troubleshoot and report 
as it is centralized and controlled. 

It is difficult to troubleshoot and report as it is 
distributed and controlled. 

13 

Its maintenance cost is lower than 

the traditional network. Cost is higher than SDN. 

 

As the SDN technology (see [4]) is based on an intelligent controller, it allows you to 

automatically redistribute traffic. It turned out that the device allows you to centrally change the 

settings of network equipment in branches, monitor the network status, load and quality of 

channels online, and solve problems. This ensures the transparency of data transmission 

networks and reduces the burden on IT professionals serving the network. 

The study also showed that the SDN solution involves the automatic networking of private 

networks and the transmission of information through all available channels without losing the 

speed and quality of applications. For example, in the past, only expensive VPN channels were 

used to transmit audio or video without distortion. Now, thanks to SDN, we can only use the 

Internet and LTE as a backup(see [5]). In this way, customers can save on telecommunication 

bill payments and solve VPN reservation issues simply and cheaply. Unlike other virtualization 

technologies, the open-source SDN solution is more promising. SDN[2] already provides 

companies with many options to choose from OpenFlow, NETCONF, OVSDB, switches that 

support the API library, as well as enterprise software that utilizes these protocols. Like any 

other infrastructure, the SDN infrastructure is built on open standards. This open ecosystem 

accelerates network innovation. Although the traditional approach to building a network 

infrastructure still prevails due to the negative impact of mental inertia and crisis events, SDN 

already allows you to effectively solve problems in a virtual physical environment. 

By automating the network, we get the following benefits and services: reduced problems, 

reduced costs, increased network flexibility, reduced network outages, increased number of 

strategic employees, advanced analysis, and network management capabilities. 

 

3. Methods and Applications 

The article methodology includes the study of epistemological issues, programs (OpenDaylight), 

protocols (OpenFlow) in the field of networks, using scientific literature, and research articles. 
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The research aim is to present an example of an automated network as a result of the analysis 

based on the studied materials. Below is the physical experimental network represented by the 

GNS3 simulator, which is fully operational, we will get the virtualized version of the following 

network, but the initial settings must be done one way or another. 

This article provides a brief overview of virtual networks and network performance 

evidence. The physical network shown below is represented by a fully running GNS3 simulator. 

It contains hosts, routers (Mikrotik), and a virtual switch - OpenvSwitch. 

 

                                                                                                                                              

Fig . 1 ․ Network presented with GNS3 simulator. 

 

Here are the settings of one of the devices, almost the same as the rest: 

/routing OSPF instance 

set [ find default=yes ] router-id=10.255.255.1 

/IP address 

add address=10.0.4.1/24 interface=ether4 network=10.0.4.0 

add address=192.168.10.1/24 interface=ether3 network=192.168.10.0 

/routing OSPF network 

add area=backbone network=10.0.4.0/24 

add area=backbone network=192.168.10.0/24 

Here are the minimum settings that make the network complete. 

For network virtualization, as mentioned at the beginning, we implemented an SDN solution. We 

have demonstrated the use of SDN with the OpenDaylight software, which is a software platform 

for SDN.  

To work with our controller, to connect it to our physical network, we downloaded and activated 

the following components: 

 

 
opendaylight-user@root>feature:install odl-restconf odl-l2switch-all odl-mdsal-apidocs 

odl-dlux-all odl-openflowplugin-all 
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They provide a graphical user interface of OpenDaylight software, as well as the necessary 

tools and devices. After activating them, immediately after setting the appropriate settings in our 

physical OpenvSwitch network, we see a virtualized version of our network. 

To establish a "controller" connection in our physical network, we have previously configured 

the OpenvSwitch OpenFlow device by giving it the IP address of the controller by typing the 

following command: ovs-vsctl set-controller br0 tcp: 192.168.18.129:6633, where 

192.168.18.129 is the IP address of the controller and it can be different for different devices, 

6633 is the connection port and the protocol that controls data transfer over TCP. Thanks to this, 

it was able to communicate with other devices. 

 

Fig․ 2 ․ Example of a virtual network in OpenDaylight. 

  

Fig. 2 shows a virtualized version of the physical network in OpenDaylight. The picture clearly 

shows all the devices in our network that are connected to the OpenFlow protocol support 

device, OpenvSwitch. It is thanks to the OpenFlow protocol that our SDN controller sees our 

entire physical network. 

OpenFlow is a protocol for managing data processing, which is transmitted over the network 

through routers and switches using SDN technology. Fast packet forwarding (data forwarding) 

on a classic router or switch and high-level routing decisions (control operations) are made on 

the same device. The OpenFlow switch separates these two functions. Data redirection is 

performed by the switch itself, while routing decisions are entrusted to a separate controller, 

usually a standard server. 

After clicking on the network topology, Yang automatically shows us the CONFREST API URL 

it uses to get this information:                                                                                                           

 

Fig․ 3․ CONFREST API URL 
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By clicking the send button(Fig.3), we can see the topology of our operational network. 
 

 

Fig. 4․ Operating network topology. 
 

In Fig. 4, we can see information about our current topology, including the MAC (Media Access 

Control) and IP addresses of our hosts. So, you do not need to enter the device to see them every 

time, but you can see them from one control panel of SDN.  

When we send network traffic, all the information about it is mentioned in the flow tables of the 

SDN: how many packages were sent to us, how many arrived, how many dropped on the way, 

and what errors  we encountered. And all  that information we can see in the nodes of  Fig.5. 

 

 

Fig.5. Node connector statistics. 
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5. Conclusion 
 

This paper proposes a solution for network optimization. As a result of the research, we 

concluded that automation improves the speed of IT operations in response to analytical change. 

The ability to monitor operations, just as needed, provides greater visual control of the network, 

and transparency of processes within it. Network automation improves work efficiency, reduces 

human error, increases access to network services, and provides better customer service. 

Research has shown that the SDN solution includes the automatic integration of private 

networks, and the transmission of information over all available channels, without loss of 

application speed and quality. As a result of the study, it became clear that network automation 

can be implemented regardless of its type, which facilitates its transition. Network virtualization 

is a more all-encompassing version of virtualization that makes it possible to convert physical 

network hardware into software that can easily be transitioned to different domains as needed, 

increasing flexibility and scalability for the network. I came to the conclusion that its use on the 

network will be of great benefit to network administrators. 
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Ամփոփում 

 

Հետազոտության նպատակն էր մշակել ցանցի ղեկավարման 

ավտոմատացման մեթոդներ՝ վերլուծելով դրանց վիրտուալ անալոգը: 

Աշխատանքում հիմնավորվում է այս մոտեցման արդիականությունը, վեր են 

հանվում առավելություններն ու թերությունները, ընդգծվում են առկա խնդիրները և 

առաջարկվում են դրանց լուծման ուղիներ։ Արդյունքում ներկայացվել  է ցանցերի 

վիրտուալացման արդյունավետությունը՝ փորձնական ցանցի օրինակով:  

Բանալի բառեր՝  ցանց, ավտոմատացում, վիրտուալացում, SDN 

(Ծրագրակողմնորոշված ցանց), OpenDaylight (Ծրագրային ապահովում), OpenFlow 

(Արձանագրություն)։ 
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Аннотация 
 

Цель исследования заключалась в разработке методов автоматизации управления 

сетью путем анализа ее виртуального аналога. В работе обосновывается актуальность 

такого подхода, выявляются преимущества и недостатки, подчеркиваются существующие 

проблемы и предлагаются пути их решения. В результате была показана эффективность 

виртуализации сети на примере пилотной сети. 

Ключевые слова: сеть, автоматизация, виртуализация, SDN (Программно-

определяемая сеть), OpenDaylight (Программное обеспечение), OpenFlow (Протокол). 

 

 

 

 

 



 
 
 
 
 
 
 

 Կանոններ հեղինակների համար 
 
ՀՀ ԳԱԱ ԻԱՊԻ “Կոմպյուտերային գիտության մաթեմատիկական խնդիրներ” 
պարբերականը տպագրվում է 1963 թվականից: Պարբերականում 
հրատարակվում են նշված ոլորտին առնչվող գիտական հոդվածներ, որոնք 
պարունակում են նոր` չհրատարակված արդյունքներ:  

Հոդվածները ներկայացվում են անգլերեն՝ ձևավորված համապատասխան 
“ոճով” (style):  Հոդվածի ձևավորման պահանջներին ավելի մանրամասն կարելի է 
ծանոթանալ պարբերականի կայքէջում՝  http://mpcs.sci.am/: 
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The periodical “Mathematical Problems of Computer Science” of IIAP NAS RA has 
been published since 1963. Scientific articles related to the noted fields with novel and 
previously unpublished results are published in the periodical.  

Papers should be submitted in English and prepared in the appropriate style. For 
more information, please visit the periodical's website at http://mpcs.sci.am/. 

   
 
 
 
 

Правила для авторов 
 

Журнал «Математические проблемы компьютерных наук» ИПИА НАН 
РА издается с 1963 года. В журнале публикуются научные статьи в указанной 
области, содержащие новые и ранее не опубликованные результаты.  

Статьи представляются на английском языке и оформляются в 
соответствующем стиле. Дополнительную информацию можно получить на веб-
сайте журнала:   http://mpcs.sci.am/. 
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The electronic version of the periodical “Mathematical Problems of Computer 

Science” and rules for authors are available at  
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