Mathematical Problems of Computer Science 49, 103-109, 2018.

On Dependence of Interpretation Algorithms of Typed
Functional Programs on Canonical Notion of
0-Reduction

Davit A. Grigoryan

Department of Informatics and Applied Mathematics, YSU
e-mail: david.grigoryan.a@gmail.com

Abstract

In this paper the interpretation algorithms of typed functional programs are consid-
ered. The interpretation algorithm is based on substitutions, G-reduction and canonical
d-reduction. The basic semantics of typed functional program is a function with inde-
terminate values of arguments, which is the main component of its least solution. If
the value of the basic semantics for some values of arguments is indeterminate, then
the interpretation algorithm either stops with the value L, or works endlessly. It is
shown that seven known interpretation algorithms are 1-depend on canonical notion
of é-reduction. Here are these algorithms: FS (of full substitution), PES (of paral-
lel external substitution), LES (of left external substitution), PIS (of parallel inner
substitution), LIS (of left inner substitution), ACT (active algorithm), PAS (passive
algorithm).

Keywords: Typed functional program, Canonical d-reduction, Interpretation al-
gorithm, | -dependency.

1. Typed A-Terms, Canonical Notion of §-Reduction, Typed Functional Pro-
grams

The definitions of this section can be found in [1,2,3]. Let M be a partially ordered set,
which has a least element |, which corresponds to the indeterminate value. Each element of
M is comparable only with itself and with L, which is the least element of M. Let us define
the set of types (denoted by T'ypes).

1. M € Types,

2. If B,aq,...,ax € Types (k > 0), then the set of all monotonic mappings from ay X ... X ay,

into 3 (denoted by [a; X ... X . — f]) belongs to Types.

Let a € T'ypes, then the order of type « (denoted by ord(«)) will be a natural number,
which is defined in the following way: if o = M then ord(a) =0, if o = [a1 X ... X o, — [],
where 3, aq, ..., ap € Types, k > 0, then ord(a) = maz(ord(ay),...,ord(ag),ord(3)) + 1. If =
is a variable of type a and constant ¢ € «, then ord(x) = ord(c) = ord(«).

Let a € Types and V, be a countable set of variables of type o, then V = | V, is

acTypes

the set of all variables. The set of all terms, denoted by A= U A,, where A, is the set

acTypes
of terms of type «, is defined in the following way:

103

104 On Dependence of Interpretation Algorithms of Typed Functional Programs on Canonical Notion

1. If ¢ € a,a € Types, then c € A,,
2. If x € V,, a € Types, then x € A,,

3. If7 € Aoy x..xap—p), ti € Ao, where 8, a; € Types,i = 1,....k, k> 1, then7(ty,..., 1) €
Ag (the operation of application, (ti,...,t) is the scope of the applicator 7),

4. If 7 € Ag,z; € V,, where B,a; € Types, i # j = z; # x;,1,5 = 1,....kk > 1
then Azy..24[7] € A, x..xa,—pg (the operation of abstraction, 7 is the scope of the
abstractor Axy...xy).

The notion of free and bound occurrences of variables as well as free and bound variable
are introduced in the conventional way. The set of all free variables in the term ¢ is denoted
by FV(t). Terms t; and t, are said to be congruent (which is denoted by ¢; = t5) if one
term can be obtained from the other by renaming bound variables. The occurrence of free
variable in the term is called internal if it does not enter the applicator, the scope of which
contains a free occurrence of some variable. The occurrence of free variable in the term is
called external if it does not enter the scope of the applicator that contains a free occurrence
of some variable.

Let t € Ay, a € Types and FV(t) C {y1, s yn}, Yo = (Y, .., 42), where y; € V3,0 €
0Gi, 0; € Types,i = 1,....,n,n > 0. The value of the term t for the values of the variables
Y1, ..-Yn equal to 7y = (3, ...,4"), is denoted by Valy,(t) and is defined in the conventional
way.

Let terms t1,t5 € Ay, € Types, FV (t1)UFV (t2) = {y1, .., Yn}, ¥i € Vi, Bi € T'ypes,i =
1,....,n,n > 0, then terms t; and ¢, are called equivalent (denoted by t; ~ ts) if for any
To = (), ..., 42), where 4 € Vj,,i = 1,...,n we have the following: Valy (t1) = Valg, (t2). A
term t € A, a € Types, is called a constant term with value a € a if t ~ a.

Further, we assume that M is a recursive set and the considered terms use variables of
any order and constants of order < 1, where constants of order 1 are strong computable,
monotonic functions with indeterminate values of arguments. A function f : M* — M,k >
1, with indeterminate values of arguments, is said to be strong computable if there exists an
algorithm, which stops with the value f(my,...,my) € M for all my,...,my € M, see [2].

A term t € A with a fixed occurrence of a subterm 7 € A, where o € T'ypes, is denoted
by t.,, and a term with this occurrence of 7 replaced by 7o, where me A, is denoted by t,.
To show mutually different variables of interest xi,...,zx, k > 1, of a term ¢, the notation
t[z1, ..., k] is used. The notation t[ty, ..., tx] denotes the term obtained by the simultaneous
substitution of the terms %4, ...,t; for all free occurrences of the variables x, ..., x;, respec-
tively, where z; € V,,,,1 # j = x; # v, t; € A,, o € Types,i,j =1,.,k, k> 1.

A term of the form Axj...xy[7([z1, ..., k]| (t1, ..., tg), where x; € Vi # j = x; # 25,7 €
ANt e Ny, 04 € Types,i,j =1,...,k,k > 1, is called a B-redex, its convolution is the term
T[t1,...,tx]. The set of all pairs (79, 71), where 7y is a f-redex and 7 is its convolution, is
called a notion of f-reduction and is denoted by 3. A one-step f-reduction (—gz) and (-
reduction (——p) are defined in the conventional way. A term containing no [-redexes is
called a f-normal form. The set of all f-normal forms is denoted by §-N F.

d-redex has a form f(ty,...,tx), where f € [M* — M|, t; € Apryi = 1,k k > 1, its
convolution is either m € M and in this case f(t1,...,t;) ~ m or a subterm ¢; and in this
case f(ty,....,tx) ~ t;;i = 1,..., k. A fixed set of term pairs (7, 71), where 7y is a d0-redex
and 71 is its convolution, is called a notion of d-reduction and is denoted by 0. A one-step
d-reduction (—5) and d-reduction (——) are defined in the conventional way.

D. Grigoryna 105

A one-step fd-reduction (—gs) and Fo-reduction (——gs) are defined in the conventional
way. A term containing no (d-redexes is called a normal form. The set of all normal forms
is denoted by NF'.

A notion of d-reduction is called a single-valued notion of d-reduction, if J is a single-
valued relation, i.e., if (19,71) € § and (79,72) € §, then 7 = 75, where 75,71, 75 € Ay A
notion of d-reduction is called an effective notion of d-reduction if there exists an algorithm,
which for any term f(t1,...,t;), where f € [M* — M|, t; € Apr,i = 1,...,k, k > 1, gives its
convolution if f(ty,...,t;) is a d-redex and stops with a negative answer otherwise.

Definition 1. [3] An effective, single-valued notion of §-reduction is called a canonical no-
tion of d-reduction if:

1.tep-NFt~mmeM\{L}=t—-—sm,

2.te-NF, FV(t) =0t ~ L =t —>—; L.

Theorem 1. (on canonical notion of d-reduction). For every recursive set of strong com-
putable, monotonic functions with indeterminate values of arguments there exists a canonical
notion of d-reduction.

Proved in [3].

Typed functional program P is the following system of equations:

Fl = tl[Fb 7Fn]
P (1)
E, =t,[F), ..., F,)

where F; € Vai,i 7é j = F; §é F‘j,tz[Fl,,Fn] € Aai, FV(tz[Fl,,Fn]) C {Fl,...,Fn},
a; € Types,i,j=1,...,n,n>1,a, = [MF — M], k> 1.

Every typed functional program P has the least solution (see [1]). Let (fi,..., fn) €
a1 X ... X a,, be the least solution of P, then the first component f; € [M* — M] of the
least solution is said to be the basic semantics of the program P and is denoted by f,.

Fiz(P) = {(mq, ...,mg,m)| fp(ma,...,my) =m, where m,mq,...,my, € M, k> 1}.

2. Interpretation Algorithms, | -Dependence

The input of the interpretation algorithm A is a program P of the form (1), a term
Fi(mq,...,my), where m; € M, ¢ = 1,...,k,k > 1 and a canonical notion of d-reduction.
Algorithm A stops with the result m € M or works infinitely. Algorithm A uses three kinds
of operations: substitution of the terms t1, ..., t,, instead of some free occurrences of variables
F, ..., F,, one-step [B-reduction and one-step d-reduction.

Proca(P) = {(mu, ..., mg, m)| algorithm A stops for the program P and the term
Fi(mq,...,my) with the result m, where m,my,...,my € M, k > 1}

Interpretation algorithm A is consistent if for any program P and for any canonical notion
of é-reduction we have: Procs(P) C Fix(P).

Theorem 2. FEvery interpretation algorithm A is consistent.

106 On Dependence of Interpretation Algorithms of Typed Functional Programs on Canonical Notion

Proof. Follows from the results of [4]. B

Definition 2. An interpretation algorithm A 1 -depends on canonical notion of d-reduction
if there exist 01 and 6o canonical notions of 0-reduction, program P and my,...,my € M,k > 1
such that: (my,...,mg, L) € Proca(P) for §; and (mq,....,my, L) & Proca(P) for ds.

To show a sequence Fj,, ..., F;_, s > 1 of some free occurences of variables of the set { F1, ..., F},}
in the term ¢, the notion ¢ < I, ..., F;, > is used. The notion ¢t < ¢,,,...,t;, > denotes the
term obtained by the simultaneous substitution of the terms ¢, ...,t;, for free occurences
Ei ..., F;,, respectively.

19

Definition 3. (Interpretation algorithms) FS, PES, LES, PIS, LIS, PAS, ACT

STEP 1:

FS, PES, LES, PIS, LIS, PAS, ACT :1ft € NF and FV ()N {F,,...,F,} = 0 then t.
else go to Step 2.

STEP 2:

FS, PES, LES, PIS, LIS: If t = t, where 7 is a leftmost redex (J-redex or -redex), then
A(P,t.), where 7" is the convolution of the 7, A € {F'S, PES, LES, PI1S, LIS}, else go to
Step 3.

ACT, PAS: If t = tp, (0 < i < n), where tp, is the term ¢ with a fixed leftmost free
occurrence of a variable of the set {F1, ..., F},}, which is located to the left of the leftmost
redex, then A(P,t;,), where A € {ACT, PAS}, else go to Step 3.

STEP 3:

FS: It t = t[Fy, ..., F,], then FS(P,t[t1, ..., t,]).

PES: Iftt=t < F,,...,F;,, >, where F},, ..., F},,k > 0 is the sequence of all external free
occurrences of variables of the set {F}, ..., F},}, then PES(P,t <t;,...,t; >).

LES: 1t t = tp,, where F; is the leftmost external free occurrence of a variable of the set
{F\,..,F,}, then LES(P,t,,).

PIS: Ift =t < F,,...,F;, >, where F} , ..., F;, , k > 0 is the sequence of all internal free
occurrences of variables of the set {Fy, ..., F,,}, then PIS(P,t < t;,....t; >).

LIS: 1f t = tF,, where Fj is the leftmost internal free occurrence of a variable of the set
{F),...,F,}, then LIS(P,t,,).

ACT: If t = t, where 7 = A\vy..x[T[21, ...,]| (71, ...,) and T is a leftmost redex, then
ACT (P, t;acr(Pr),...AcT(P)]), €lse go to Step 4.

PAS: If t = t; where 7 = A\vy..x[T[x1, ..., 2] (71, ...,) and 7 is a leftmost redex, then
PAS(P,tr5,. 1), else go to Step 4.

STEP 4:

ACT, PAS: 1f t = t, where 7 is a leftmost redex, which is a é-redex, then A(P, t./), where
7' is the convolution of the 7, A € {ACT, PAS}.

Theorem 3. Any interpretation algorithm FS, PES, LES, PIS, LIS, PAS, ACT 1-depends
on canonical notion of d-reduction.

Proof. Let us fix M = N U{L}, where N = {0,1,2,...} and C = {not_eq} where
not_eq € [M? — M] is a built-in function and for every my, my € M we have:

1, if mi,me € N and my # mao

not_eq(my, ms) _{ 1, otherwise

D. Grigoryna

107

It is easy to see that not_eq is a strong computable, naturally extended function with
indeterminate values of arguments (a function is said to be naturally extended, if its value
is L whenever the value of at least one of the arguments is L). Therefore, from Theorem 1

it follows that there exists the following canonical notion of §-reduction ¢ for the set C:

. (not_eq(ni,ny), 1) € §, where ny,ny € N and ny # ny
(not_eq(n,n), L) € §, where n € N

(not_eq(n, L), L) € §, where n € N

(not_eq(L,n), L) € §, where n € N

(not_eq(J_, 1),1)esd

Let us define two canonical notions of d-reduction §; and o,.

ni,ng), 1) € §;, where ny,ny € N and ny # ny
t,t), L) € §;, where t € Ay,

), L) € &1, where t € Ay,

), L) € 61, where t € Ay,

9z is: (not_eq(ni,na), 1) € 6o, where ny,ny € N and n; # no
(not_eq(m,m), L) € 62, where m € M
(not_eq(t, L), L) € 69, where t € Ay,
((L.t

not_eq(L,t), L) € §, where t € Ay,

It is easy to see that ¢; is an effective, single-valued notion of §-reduction. Therefore,

to show that d; is a canonical notion of d-reduction it suffices to show that § C §;. Let
(11, 72) € 0, where 71,79 € M, then the following cases are possible:
71 = nq and 75 = ng, where ny,ny € N and n; # ng, then it is obvious that

(not-eq(ni,na), 1) € 4.

T1 = T = n, where n € N, then from (not_eq(t,t), L) € §;, where t € Ay, follows that

(not_eq(n,n), L) € ;.

71 =n and 75, = 1, where n € N, then from (not_eq(t, L), L) € 01, where t € Ay,

follows that (not_eq(n, L), L) € d;.

71 = L and 7, = n, where n € N, then from (not_eq(L,t), L) € 01, where t € Ay,

follows that (not_eq(L,n), L) € d;.

71 = L and 7, = L, then from (not_eq(t,t), L) € 61, where t € Ay, follows that

(not_eq(L, L), 1) € 6.

It is easy to see that dy is an effective, single-valued notion of d-reduction. Therefore,

to show that d5 is a canonical notion of d-reduction it suffices to show that § C d5. Let
(11, 72) € 0, where 71,79 € M, then the following cases are possible:
71 = nq and T, = ng, where ny,ny € N and n; # ng, then it is obvious that

(not_eq(ny, n>), 1) € 6.

Ti = 7o = n, where n € N, then from (not_eq(m,m), L) € §,, where m € M, follows

that (not_eq(n,n), L) € 0.

71 =n and 7o = L, where n € N, then from (not_eq(t, L), L) € 09, where t € Ay,

follows that (not_eq(n, L), L) € d,.

108 On Dependence of Interpretation Algorithms of Typed Functional Programs on Canonical Notion

71 = L and 7o = n, where n € N, then from (not_eq(L,t), L) € 09, where t € Ay,
follows that (not_eq(L,n), L) € d,.

71 = L and 7, = L, then from (not_eq(m,m), L) € &y, where m € M, follows that
(not_eq(L, 1), 1) € .

Let P be the following program, where Iy, iy € Vip—n, @ € Vi

Fy = Xx[not_eq(Fy(z), Fy(x))]

For ¢;, program P and F'S, PES, LES, PIS, LIS, PAS, ACT we have:

F1(0);

Az[not_eq(F5(x), F3(2))](0) —4 not_eq(F5(0), F3(0)) —5 L

Therefore (0, L) € Procrg(P), (0, L) € Procpgs(P), (0, J_) € Procpps(P),

(0, L) € Procprs(P), (0, L) € Procris(P), (0, L) € Procpas(P), (0, L) € Procacr(P).

For ¢y, program P and ACT, LIS, PAS, LES we have:

Fi(0);

Az[not-eq(Fy(x), F>(x))](0) — 5 noteq(F5(0), F5(0));

not_eq(Ax[Fy(2)](0), F5(0)) —g not_eq(F2(0), F5(0));

....and so on.

Therefore (0, L) € Procyps(P), (0, L) & Procpis(P), (0,L) & Procpas(P), (0, 1) &
Procacr(P).

For ¢y, program P and F'S, PES, PIS we have:

Fy(0);

Az[noteq(F5(x), F5(x))](0) — 5 not_eq(F3(0), F2(0));

not_eq(Ax[F(2)](0), Az[F(2)](0)) — 5 not_eq(F2(0), F»(0)));

.. and so on.

Therefore (0, L) & Procpg(P), (0, L) & Procprs(P), (0, L) & Procps(P).

In conclusion, for each interpretation algorithm A € {F'S, PES, LES, P1S, LIS, PAS, ACT}
there exist §; and Jo canoncial notions of d-reduction and program P such that (0, 1) €
Proca(P) for §; and (0, L) & Proca(P) for d5, therefore A L-depends on canonical notion
of d-reduction. W

References

[1] S. A. Nigiyan “Functional Languages”, Programming and Computer Software, vol. 17,
no. 5, pp. 290-297, 1992.

[2] S. A. Nigiyan, “On non-classical theory of computability”, Proceedings of the YSU,
Physical and Mathematical Sciences, no.1, pp.52-60, 2015.

[3] S. A. Nigiyan and T.V.Khondkaryan, “On canonical notion of §-reduction and on trans-
lation of typed A-terms into untyped A-terms”, Proceedings of the YSU, Physical and
Mathematical Sciences, no. 1, pp. 46-52, 2017.

[4] R. Yu. Hakopian, “On procedural semantics of strong typed functional programs”, Pro-
ceedings of YSU, Natural Sciences, (in Russian), no. 3, pp.59-69, 2008.

D. Grigoryna 109

Submitted 10.10.2017, accepted 18.01.2018.

Shyhqugyuo pnilGyghnGuy opwagptph hGmbpypbunwghwjh
wjgnphpulGtnh Juujwonipjnilp JubGnGhYy
s-ntinnijghwjh qunuthwphg

. QphgnpywG
Udthnthnid

Whwunwlpnid nhunwpyuwo GG mhyhqugywo pmllyghnGwy opwagptiph hGunbpwpb-
nwghwjh wignphpdltipp: hbGumbpyptinwghwih wignphpdp hhdGywo b wmbnunpiwd, -
ntnnighwjh L JuGnGhy d-ntnpmyghwjh gqnponnmipniGGtph ypw: Shyhqugyuo pniGy-
ghnGw) opwgnptiph hhdGwywl vbdwlmhywl winpn) wpgmutlGunitpny pniGlyghw L, npp
thnppwgnt)i nuodwl hhdGwlwl pwnunppsG E: Gpb hhiGwlwl vbdwlwnhlwih wpdtipn
npny wpdbpltiph nhypmy wlnpn) E, wyw hGunbpypbunwghwjh wignphpip Jud Juwlq £
wnlimd | wpdtpny, jud wpfuwmmd £ wiytpng: 8nyg & wipdwo, np 7 hwjmGh hGunbp-
wpbnwghw)h wignphpiGtpp L-juwfujwd GG JulnGhy o-ntnniyghwjh qunuihwphg: Uyn
wignphputinp htinlyw) G GG™ FS (hpy mtnunpdw), PES (gniquhtin wipmwphl mbnuinpiwG),
LES (dwfu wpmwphl mbnunpiwG), PIS (qgniquhtn GipphG mtnunpiwG), LIS (dwhu GapphG

wtnunpiwb), ACT (wlwmhy wignpppy), PAS (qwuhy wignphpy).

O 3aBHCHMOCTH aATOPUTMOB MHTEPIIPEeTAlluyd TUIN3UPOBaHHEIX
PYHKIIMOHAABHEIX IPOrPaMM OT Ka@HOHUYECKOI'O IIOHATUS

)-PEAYKIINU
A,. I'puropsan

AnHoTanus

B aaHHOI paboTe paccMaTPUBAIOTCA WMHTEPIPETATOPHl TUIW3UPOBAHHBIX (DYHK-
IIMOHAABHBIX IPOTpPaMM. AATOPUTM UHTEpPIIpeTallii OCHOBAH Ha MOACTAHOBKAX, [3-
PEAYKIIMU U KAHOHUUYECKOU O-peAyKuuu. OCHOBHas CeMaHTHKa TUIU3UPOBAHHBIX
(PYHKIIMOHAABHBIX ITPOTPAMM €CTh (PYHKIIUSA C HEOIIpEASAECHHBIMU 3HAYEeHUIMU apry-
MEHTOB, KOTOpPAas ABASIETCA I'A@BHOU KOMIIOHEHTON ee HauMEeHBIIlero pemleHusa. Ecan
3HQUeHNe OCHOBHOU CEMAHTHKU, A HEKOTOPBIX 3HAUYEHUM apTyMEHTOB, €CTh HEOII-
PEAEAEHHOCTh, TO @ATOPUTM HHTepIpeTaruyi ANOO OCTAHABAMBAETCS CO 3HaYEHUEM
1, Amb6o paboTaeTr 6eckoHeuHoO. [ToKa3zaHO, UYTO CEMb U3BECTHBLIX AATOPUTMOB UHTEP-
npeTanuu | -3aBUCAT OT KAHOHUYECKOTO MOHSATHUS 0-PeAYKINU. BOT 3TU aATOPUTMBL:
FS (moanou noactanoBku), PES (mapaarenbHOM BHelTHelM MOACTAHOBKY), LES (AreBoit
BHEIIIHEN IIOACTaHOBKHU), PIS (mapasreabHOM BHYTpeHHeEN NOACTAHOBKHU), LIS (reBoit
BHyTpeHHel NTOACTaHOBKH), ACT (akTUBHBINM arropUTM), PAS (macCHUBHEIN aATOPUTM).

