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Abstract

This article examines the behavior of the normalizing constants in V. Feller’s theo-
rem on the convergence of distributions for sums of independent, identically distributed
random variables with heavy tails at infinity. It is proved that, in this setting, the nor-
malizing constant is regularly varying at infinity.
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1. Introduction

We consider a sequence of independent, identically distributed random variables with the
distribution function F (x). Suppose that for x → +∞, an asymptotic relation is executed:

1− F (x) ∼ x−αL(x)

Γ(1− α)
, (1)

where 0 < α < 1, Γ(α) =
∫∞
0

xα−1e−xdx, L(x) - slowly varying function at infinity (SVFI),
i.e., a positive function defined for (0,∞) and for each x > 0 fulfills the condition

lim
t→+∞

L(tx)

L(t)
= 1.

Subsequently, according to Theorem 2 (see [1], XIII.6, p. 448), if F is the probability
distribution, concentrated on (0,∞) and such that upon n → ∞

F n∗(anx) → G(x), (2)
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(at points of continuity), where F n∗(·) - n-fold convolution of distribution F with itself, while
G is the proper distribution, not concentrated at one point and if the type of distribution F
is (1), an variates in standard measure may be selected in a way that

nL(an)

aαn
→ 1. (3)

In this case, the asymptotic relation (2) is executed along with the distribution of probabili-
ties G = Gγ, where Gα is a stable distribution with 0 < α < 1, parameter focused on (0,∞)
having Laplace-Stieltjes transform e−λα

.

2. The Behavior of the Normalizing Constants in V. Feller’s Theorem at
Infinity

The positive function R is called (accurately) regularly varying at infinity if it is measurable
on the [A,∞), A > 0 semiaxis and there exists such a number as α ∈ (−∞,+∞), which for
a certain x > 0

lim
t→+∞

((R(xt)/(R(t)) = xα.

Meanwhile, α is called the order (indicator) of the function R.
Suppose that an = n1/αφ(n) and find out what features shall possess function φ(n) in

order to execute asymptotic (3).
By plugging in (3) an equation for an, we will deduce an equivalent (3) relation:

L
(
n1/alphaφ(n)

)
∼ φα(n),

or in a more general form:
L
(
t1/alphaφ(t)

)
∼ φα(t). (4)

Consider the following relation:

Rt(x) =
L((xt)1/αφ(tx))

L(t1/alphaφ(t))
. (5)

By virtue of asymptotic relation (4) upon t → +∞ out of (5), it follows that

Rt(x) ∼
(
φ(tx)

φ(t)

)α

. (6)

In ([2], p. 10), the following is proved:

Theorem 1. (On the introduction of SVFI). If funcion L, defined on semiaxis [A,+∞),
A > 0 – SVFI, such number B ≥ A will be found so that for all x ≥ B occurs the following
representation:

L(x) = exp

{
η(x) +

∫ x

B

ε(u)

u
du

}
, (7)

where η- limited measurable function on [B,+∞) is such that
a) η(x) → c (|c| < ∞) and
b) ε(x) - continuous function on [B,+∞) is such that ε(x) → 0 in case of x → +∞.
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Since L is SVFI, therefore using the relation (5), it is not complicated to deduce the following
equation for Rt(x):

Rt(x) = exp{η((tx)1/αφ(tx))− η((t)1/αφ(t))} · exp

{∫ (tx)1/αφ(tx)

t1/αφ(t)

ε(y)

y
dy

}
. (8)

By introducing the notation at(x) = φ(tx)
φ(t)

, the expression (7) will be transformed into the
following type:

Rt(x) = exp{η((tx)1/αφ(tx))− η((t)1/αφ(t))} · exp

{∫ x1/αat(x)

1

ε
(
ε
(
t1/αφ(t)z

))
z

dz

}
. (9)

In the case of t → +∞, the first factor in the right-hand part of the relation (8) by virtue
of condition b) of Theorem 1, tends to unity. Therefore, upon the availability of sufficiently
high t

Rt(x) ∼ exp

{∫ x1/αat(x)

1

ε
(
s
(
t1/αφ(t)y

))
y

dy

}
. (10)

Theorem 2. In case of any x > 0, the following equation is true:

lim
t→+∞

x1/αat(x) = 1.

Proof. It shall firstly be proved that limt→+∞at(x) ↛ +∞ for all x ∈ (0,+∞). Suppose
that the contrary takes place: then for each x > 0, there exists a sufficiently high t0 = t0(x),
that in the case of all t > t0, the following condition is executed:

x1/αat(x) > 1. (11)

Further, condition b) means that for any δ > 0, there exists y0 = y0(δ), such that for all
y > y0 occurs the the following inequality:

ε(y) < δ. (12)

Besides, since t1/αφ(t) → +∞ in case of t → +∞, we will select t1 ≥ t0 such that upon
t > t1 inequality t1/αφ(t) > y0 is executed by virtue of selecting t0 and condition z ≥ 1
apparent from (12), uniformly in z follows the inequality ε(zt1/αφ(t)) < δ. Therefore, after
uncomplicated transformation, the following inequality is deduced:

exp

{∫ x1/αat(x)

1

s
(
t1/αφ(t)y

)
y

dy

}
≤ xδ/αaδt (x). (13)

On the other hand, by virtue of asymptotic relation (4) in the case of t → +∞, the following
is concluded:

Rt(x) =
L
(
(xt)1/αφ(tx)

)
L (t1/αφ(t))

∼
(
φ(tx)

φ(t)

)α

= aαt (x). (14)

That’s the inequality (11) from which we deduce the following:

xδ/αaδt (x) ≥ aαt (x).
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By selecting δ < α from the previous inequality, we have the following:

xδ/α ≥ a
α−δ(x)
t . (15)

Upon fixing x > 0, the left-hand side of (13) is limited, while the right-hand side by the
virtue of limitation α − δ > 0 for t → +∞ tends to infinity, resulting in a contradiction.
Thus, it can be concluded from (10) that for any x > 0, the following inequality holds:

lim
t→+∞

x1/αat(x) ≤ 1. (16)

Let’s demonstrate that at(x) ↛ 0 in the case of t → +∞. We’ll also conduct the proof by
an indirect proof method. Assume that for each x > 0 there exists such t′ = t′(x), that for
all t > t′, the following condition is satisfied:

x1/αat(x) < 1. (17)

Simultaneously t′′ > max(t′, t1) may be taken as high that

x1/αat(x) · t1/αφ(t) = (xt)1/αφ(xt) > y0,

where y0 is defined in (11).
Taking into consideration the above, it is not difficult to prove that

exp

{∫ x1/αat(x)

1

ε
(
t1/αφ(t)y

)
y

dy

}
= exp

{
−
∫ 1

x1/αat(x)

ε
(
t1/αφ(t)y

)
y

dy

}
≥ exp

{
−δ ln z|1x1/αat(x)

}
(18)

= aδt (x) · xδ/α.

On the other hand, for all x > 0 upon sufficiently high t from (14), we have the following:

Rt(x) ∼ aαt (x) ≥ aδt (x) · xδ/α.

By selecting δ < α, in (12) we will have the following:

at(x) ≥ x
δ

α(α−δ) > 0,

that in the case of t → +∞ contradicts our assumption, i.e., the condition (17) is inexe-
cutable. Thus, Theorem 2 is proved.

Thereof, it follows that for all x > 0 limt→+∞ Rt(x) = 1, while from relation (6) it is
concluded that function φ(t) is SVFI.

Thus, the following is proven:

Theorem 3. If conditions (1) – (3) are executed, the norming quantity an is a regularly
varying function at infinity with the parameter 1/α.

3. Conclusion

If F is the distribution of probabilities, concentrated on (0,∞), for which in case of x →
+∞ asymptotic relation (1) is executed and Gα is a stable distribution with the parameter
0 < α < 1 concentrated on (0,∞), then

F n∗ (n1/αφ(n) · x
)
→ Gα(x),

where φ(·) is SVFI connected with SVFI L(·) by the following asymptotic relation

L
(
n1/αφ(n)

)
∼ φα(n).
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²Ù÷á÷áõÙ

²Ûë Ñá¹í³ÍÝ áõëáõÙÝ³ëÇñáõÙ ¿ ÝáñÙ³É³óÝáÕ Ñ³ëï³ïáõÝÝ»ñÇ í³ñù³·ÇÍÁ ì. 
ü»ÉÉ»ñÇ Ã»áñ»ÙáõÙ` Ï³åí³Í ³ÝÏ³Ë, ÝáõÛÝ³Ï³Ýáñ»Ý µ³ßËí³Í å³ï³Ñ³Ï³Ý 
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»Í³Ýñ» åáã»ñ ³Ýí»ñçáõÃÛ³Ý Ù»ç: òáõÛó ¿ ïñíáõÙ, áñ ³Ûë Ñ³Ù³ï»ùëïáõÙ ÝáñÙ³É³óÝáÕ 
Ñ³ëï³ïáõÝÁ Ï³ÝáÝ³íáñ Ï»ñåáí ÷á÷áËíáõÙ ¿ ³Ýí»ñçáõÃÛ³Ý Ù»ç:

´³Ý³ÉÇ µ³é»ñ`     ³å³Ñáí³·ñáõÃÛáõÝ, å³ï³Ñ³Ï³Ý ÷á÷áË³Ï³Ý, Ï³ÝáÝ³íáñ 
Ï»ñåáí ÷á÷áËíáÕ ýáõÝÏóÇ³, ¹³Ý¹³Õ ÷á÷áËíáÕ ýáõÝÏóÇ³, Ï³ÛáõÝ µ³ßËáõÙ:
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