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Abstract 
 

    In this survey, we explore the broad applications of Information Theory in Machine 
Learning, highlighting how core concepts like entropy, Mutual Information, and KL-
divergence are used to enhance learning algorithms. Since its inception by Claude 
Shannon, Information Theory has provided mathematical tools to quantify uncertainty, 
optimize decision-making, and manage the trade-off between model flexibility and 
generalization. These principles have been integrated across various subfields of Machine 
Learning, including neural networks, where the Information Bottleneck offers insights into 
data representation, and reinforcement learning, where entropy-based methods improve 
exploration strategies. Additionally, measures like Mutual Information are critical in 
feature selection and unsupervised learning. This survey bridges foundational theory with 
its practical implementations in modern Machine Learning by providing both historical 
context and a review of contemporary research.. We also discuss open challenges and 
future directions, such as scalability and interpretability, highlighting the growing 
importance of these techniques in next-generation models. 
Keywords: Information Bottleneck, Neural networks, Entropy-Based regularization, 
Mutual information, Feature selection, KL-Divergence. 
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1. Introduction 

 

The intersection of Information Theory (IT) and Machine Learning (ML) has become increasingly 
pivotal in advancing the state of the art across a wide range of subfields. IT, formalized by Claude 
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Shannon in his seminal 1948 work [1], introduced foundational concepts like entropy, which 
measures the uncertainty or disorder of a system, and Mutual Information (MI), which quantifies 
the amount of information one variable contains about another. These principles have profound 
implications in ML, particularly in optimizing algorithms, managing uncertainty, and improving 
decision-making processes. 

In the context of ML, models often grapple with the bias-variance trade-off, striving to 
balance flexibility with generalization. Information-theoretic techniques such as minimum 
description length [2] provide an elegant way of navigating this trade-off by minimizing the 
complexity of models while maintaining accuracy. Similarly, maximum entropy models [3] 
leverage entropy to derive distributions that reflect uncertainty in the absence of prior knowledge, 
making them useful in many predictive models. 

 
The impact of IT on ML is far-reaching: 

● In neural networks, the Information Bottleneck (IB) method offers a theoretical framework 
for understanding how deep networks compress and transmit information through their 
layers [4]. 

● Reinforcement learning employs entropy-based regularization to enhance exploration 
strategies, helping agents avoid local optima and discover better policies [5]. 

● Feature selection relies on MI to identify the most relevant variables while discarding 
redundant or irrelevant data, which is crucial for high-dimensional datasets [6]. 

● Unsupervised learning techniques such as autoencoders and variational autoencoders  rely 
on information-theoretic measures like KL-divergence to ensure that latent representations 
capture the essential structure of data [7]. 

 
As the field of ML continues to evolve, information-theoretic methods remain central to 

the development of robust and efficient models. Recent advancements have brought renewed 
attention to these techniques, particularly in addressing the challenges of scalability, 
interpretability, and privacy in deep learning systems. The IB theory, for example, provides 
insights into how models generalize and perform in real-world tasks by analyzing the flow of 
information between inputs and outputs [8]. Moreover, information-theoretic approaches have 
been increasingly employed in cutting-edge fields such as quantum ML, where quantum IT 
principles are applied to create more powerful algorithms [9]. 

This survey aims to provide a comprehensive overview of the recent developments, current 
applications, and future directions of IT in ML. This investigation will provide future good basis 
for bridging the gap between foundational theory [10] and cutting-edge research. 

The paper is organized as follows: in the next section main concepts of IT are described. 
Main IT tools applied in ML are discussed in Section 3. Particular emphasis is placed on the IB 
framework in Section 4. Section 5 discusses the challenges and limitations of IT in ML. The paper 
is summarized in Section 6. 
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2.  Useful IT Concepts 
 
Entropy: Measuring Uncertainty 
 Entropy is the cornerstone of IT, introduced by Claude Shannon in 1948 [1], and is a measure 
of the uncertainty or randomness inherent in a random variable or a probability distribution [11]. 
In ML, entropy plays critical role in quantifying the amount of unpredictability in data, making it 
a crucial tool for optimizing algorithms and decision-making processes. 

For a discrete random variable 𝑋𝑋 with a probability distribution 𝑃𝑃(𝑋𝑋), where 𝑋𝑋 can take 
values {𝑥𝑥1, 𝑥𝑥2, ..... , 𝑥𝑥2 } with probabilities {𝑝𝑝(𝑥𝑥1), 𝑝𝑝(𝑥𝑥2), ..... , 𝑝𝑝(𝑥𝑥𝑛𝑛)}, the 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝𝑒𝑒 𝐻𝐻(𝑋𝑋) is 
defined as: 

𝐻𝐻(𝑋𝑋) =  −∑ 𝑝𝑝𝑛𝑛
𝑖𝑖=1 (𝑥𝑥𝑖𝑖)𝑙𝑙𝑒𝑒𝑙𝑙 𝑝𝑝(𝑥𝑥𝑖𝑖), 

where:  
● 𝑝𝑝(𝑥𝑥𝑖𝑖) is the probability of accurrence of the outcome 𝑥𝑥𝑖𝑖, 
● 𝑙𝑙𝑒𝑒𝑙𝑙  is the logarithm base 2, as entropy is typically measured in bits.  

The formula represents the expected number of bits required to encode the outcomes of 𝑋𝑋 
given their probabilities. Entropy achieves its maximum value when all outcomes are equally 
probable (maximum uncertainty) and its minimum value when one outcome is certain (no 
uncertainty). 

Conditional Entropy and Joint Entropy are extensions of this concept. Conditional Entropy     
𝐻𝐻(𝑋𝑋 | 𝑌𝑌) quantifies the uncertainty of 𝑋𝑋 given that Y is known, while Joint Entropy 𝐻𝐻(X, 𝑌𝑌) 
captures the combined uncertainty of two random variables. 

 

 𝐻𝐻(𝑋𝑋 | 𝑌𝑌)  =  −�  
𝑦𝑦∈𝑌𝑌

𝑝𝑝(𝑒𝑒)�  
𝑥𝑥∈𝑋𝑋

𝑝𝑝(𝑥𝑥|𝑒𝑒)𝑙𝑙𝑒𝑒𝑙𝑙 𝑝𝑝(𝑥𝑥|𝑒𝑒), 

𝐻𝐻(𝑋𝑋,𝑌𝑌)  = −∑  ∑  𝑥𝑥∈𝑋𝑋𝑦𝑦∈𝑌𝑌  𝑝𝑝(𝑥𝑥,𝑒𝑒)𝑙𝑙𝑒𝑒𝑙𝑙 𝑝𝑝(𝑥𝑥,𝑒𝑒). 

Mutual Information: Quantifying Shared Information 
 MI measures the amount of information shared between two random variables, quantifying 
how much knowing the value of one variable reduces uncertainty about the other. Formally, the 
MI between two random variables 𝑋𝑋 and 𝑌𝑌 is defined as: 

𝐼𝐼(𝑋𝑋;  𝑌𝑌)  =  𝐻𝐻(𝑋𝑋) –   𝐻𝐻(𝑋𝑋 | 𝑌𝑌)  = ∑  𝑦𝑦∈𝑌𝑌 ∑  𝑥𝑥∈𝑋𝑋  𝑝𝑝(𝑥𝑥,𝑦𝑦)
𝑝𝑝(𝑥𝑥)𝑝𝑝(𝑦𝑦)

. 

MI can be thought of as the reduction in uncertainty about 𝑋𝑋 when 𝑌𝑌 is known. Unlike 
correlation, which captures linear relationships, MI detects any kind of dependency between the 
variables, making it more robust for applications like feature selection [6]. In ML, MI is used to 
rank features based on their relevance to the target variable, allowing models to focus on the most 
informative inputs. For example, in feature selection, MI helps to identify and remove irrelevant 
or redundant features, significantly improving model performance by reducing overfitting in high-
dimensional spaces. 
 
KL-Divergence: Measuring the Difference Between Distributions 
Kullback-Leibler Divergence (KL-Divergence), also known as relative entropy, is a measure of 
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how one probability distribution differs from a second, reference distribution. For two probability 
distributions 𝑃𝑃 and 𝑄𝑄, the KL-Divergence from 𝑄𝑄 to 𝑃𝑃 is defined as: 

𝐷𝐷KL(𝑃𝑃||𝑄𝑄)  =  ∑  𝑥𝑥∈𝑋𝑋 𝑝𝑝(𝑥𝑥)𝑙𝑙𝑒𝑒𝑙𝑙 𝑝𝑝(𝑥𝑥)
𝑞𝑞(𝑥𝑥)

. 

KL-Divergence is non-negative and equals zero when the distributions are identical. Unlike 
traditional distance metrics, it is asymmetric, meaning 𝐷𝐷𝐾𝐾𝐾𝐾 (𝑃𝑃||𝑄𝑄) ≠  𝐷𝐷𝐾𝐾𝐾𝐾 (𝑄𝑄||𝑃𝑃).  

KL-Divergence is particularly useful in tasks where we approximate a complex distribution 
𝑃𝑃 with a simpler distribution 𝑄𝑄, such as in variational inference [7]. 

In variational autoencoders, KL-Divergence is used to measure how close the learned 
latent variable distribution is to a prior distribution, such as a standard normal distribution. This 
ensures that the learned representations are regularized and maintain structure during training. 
 
Cross-Entropy: Optimizing Classification Models 

Cross-Entropy is closely related to KL-Divergence, but is more commonly used in 
classification problems. While KL-Divergence measures the divergence between two probability 
distributions, cross-entropy quantifies the total number of bits needed to encode a distribution 𝑃𝑃 
using another distribution 𝑄𝑄, cross-entropy is given by: 

𝐻𝐻(𝑃𝑃,𝑄𝑄) =  −∑  𝑥𝑥∈𝑋𝑋 𝑝𝑝(𝑥𝑥) log   𝑞𝑞(𝑥𝑥). 
In ML, cross-entropy loss is widely used as a loss function for classification tasks, particularly for 
models that output probability distributions, like softmax classifiers. It measures how well the 
predicted probabilities (from model 𝑄𝑄) align with the true distribution (actual labels, 𝑃𝑃). 
Minimizing cross-entropy encourages the model to assign high probabilities to the correct classes. 

For binary classification problem, the cross-entropy loss can be written as:  
𝐾𝐾 =  −[𝑒𝑒𝑙𝑙𝑒𝑒𝑙𝑙 𝑝𝑝 + (1 − 𝑒𝑒)𝑙𝑙𝑒𝑒𝑙𝑙(1 − 𝑝𝑝)], 

where 𝑒𝑒 is the true label (0 or 1), and 𝑝𝑝 is the predicted probability of the label being 1. 
 
Maximum Entropy Principle 
 The Maximum Entropy principle suggests that, when faced with uncertainty, the best 
distribution to choose is the one that maximizes entropy, subject to any known constraints. This 
principle underprints maximum entropy models, often used in areas like natural language 
processing [12]. These models choose the distribution that remains as uncertain as possible (i.e., 
has the highest entropy) while still satisfying the constraints imposed by the available data. 

The principle encourages generality and reduces assumptions, making it useful for creating 
unbiased models when prior knowledge is limited. 
  
 
3. Overview of IT Tools for ML 
 
The application of IT concepts, such as entropy, MI, KL-divergence, and cross-entropy, has 
significantly advanced ML methodologies. These tools enable effective feature selection, model 
optimization, regularization, and performance evaluation. Below, we explore how these principles 
are utilized in practical ML tasks.  
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Feature Selection and Dimensionality Reduction 
 One of the most prominent applications of MI is in feature selection. In high-dimensional 
datasets, identifying the most relevant features for the model is crucial to improve performance 
and reduce overfitting. MI helps in selecting features that share maximum information with the 
target variable while avoiding redundant or irrelevant features. The Max-Relevance and Min-
Redundancy algorithm is a widely used feature selection technique, that maximizes MI between 
features and the target variable while minimizing redundancy among the selected features [6]. This 
ensures that the selected features are both informative and diverse. In [6], MI was applied to gene 
selection for cancer detection. This approach identified the genes most relevant for distinguishing 
between cancerous and non-cancerous cells, reducing the dataset’s dimensionality while retaining 
the most predictive features. This process significantly improved the performance of classification 
algorithms, such as Support Vector Machines, by focusing on the genes that contained the most 
meaningful information about the cancer type. Here, MI 𝐼𝐼(𝑋𝑋;  𝑌𝑌) is used to quantify the 
relationship between the input features 𝑋𝑋  and the target label 𝑌𝑌, ensuring that the selected features 
contribute significantly to the predictive power of the model.  

Building upon MI-driven feature selection, [13] proposed a fast binary feature selection 
method using Conditional MI. This approach refines MI-based selection by conditioning on 
already-selected features, ensuring that each additional feature contributes new, independent 
information to the model. The efficiency of this method enables rapid selection from datasets with 
tens of thousands of features, making it highly suitable for large-scale applications in computer 
vision and pattern recognition. Additionally, [14] explored MI-based feature selection techniques 
tailored for non-Gaussian data distributions. Their work introduced new feature selection and 
visualization algorithms that address challenges posed by high-dimensional, non-Gaussian 
datasets. By leveraging information-theoretic measures, their method improves both 
interpretability and feature selection performance in complex data environments, making it 
particularly useful in scientific and industrial applications, where data distributions deviate from 
Gaussian assumptions. Another approach leveraging MI for feature selection is presented in [15]. 
The method selects class-specific informative features, maximizing MI with the target class to 
enhance classification performance. This allows even a simple linear classifier to be effective, 
reducing reliance on complex models. While applied to object recognition, its principles extend to 
high-dimensional classification tasks, where efficient feature selection is essential. 
  
Decision Trees and Information Gain 
 Entropy plays a central role in the construction of decision trees, where it is used to 
calculate information gain. Information gain measures the reduction in uncertainty (or entropy) 
when a dataset is split based on a particular feature. A decision tree algorithm selects features 
with the highest information gain to create branches, effectively reducing the overall entropy of 
the system [16]. In the popular ID3 and C4.5 decision tree algorithms, the feature that results in 
the greatest reduction in entropy after splitting is chosen to create nodes in the tree. This process 
continues recursively, ensuring that each split reduces uncertainty and leads to the most 
informative partitions of the data. 

𝐼𝐼𝑒𝑒𝐼𝐼𝑒𝑒𝑒𝑒𝐼𝐼𝐼𝐼𝑒𝑒𝐼𝐼𝑒𝑒𝑒𝑒 𝐺𝐺𝐼𝐼𝐼𝐼𝑒𝑒 =  𝐻𝐻(𝑌𝑌)  −  𝐻𝐻(𝑌𝑌|𝑋𝑋). 
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By minimizing entropy at each step, decision trees efficiently organize data and create 
models that are easy to interpret. However, their usage extends beyond traditional datasets into 
fields like high-energy physics, where rapid detection of rare phenomena is critical. A recent study 
[17] demonstrates the application of decision trees in detecting anomalies in proton-proton 
collision data at nanosecond timescales. This work specifically focuses on identifying rare Higgs 
boson decays in real-time. The decision trees in this application rely on fast, efficient calculations 
of information gain to classify particle collision data, reducing entropy by isolating potential 
anomalies that deviate from expected particle behaviors. 

Another interesting work is [18]. This study tackles the challenge of securely training and 
evaluating decision trees in cloud environments without exposing sensitive data. The authors 
introduce a method based on additive secret sharing and the Paillier cryptosystem to protect both 
user queries and the cloud-hosted model. Their approach ensures secure computation while 
supporting offline users, making it suitable for resource-constrained applications like Internet of 
Thinking. Experimental results confirm its efficiency, particularly for deep but sparse trees, 
demonstrating reduced computational and communication overhead. 

 
Clustering and Similarity Measurement 

In unsupervised learning tasks like clustering, MI is used to measure the similarity between 
data points or clusters. The goal of clustering is to group similar data points together, and MI can 
help to determine how much information is shared between the clustering results and the true 
labels, when available. 

One notable application of ML in clustering is Normalized MI, which measures the 
similarity between two clusterings. Normalized MI is particularly valuable when evaluating the 
quality of clustering results, as it quantifies the shared information between the true class labels 
and the predicted clusters, normalized by the entropy of both distributions. This ensures that the 
score is independent of the number of clusters and the size of the dataset. Normalized MI is widely 
used in applications such as document clustering, image segmentation and analyzing [19], where 
it is crucial to assess the quality of unsupervised learning methods.  

Fuzzy clustering (a form of clustering in which each data point can belong to more than 
one cluster) plays a critical role in ML applications. Traditional clustering algorithms, such as k-
means, assume hard partitioning of the data, meaning each data point belongs exclusively to one 
cluster. However, in many real-world scenarios, data points may naturally belong to multiple 
clusters with varying degrees of membership. Fuzzy clustering, specifically Probabilistic Fuzzy 
Clustering, allows for such flexibility by assigning each data point a degree of membership across 
different clusters. 

The Robust Possibilistic Fuzzy Additive Partition Clustering method, as introduced in a 
recent study [20], builds upon these principles by incorporating deep local information to optimize 
the clustering process. This method leverages local data structures to improve clustering accuracy, 
particularly in noisy and uncertain environments. The algorithm dynamically adjusts the 
partitioning of data, thus reducing the impact of noise and outliers - a common issue in clustering. 
A significant extension of MI-based clustering techniques comes from the Information-Theoretic 
Co-Clustering approach introduced in [21]. This method simultaneously clusters both rows and 
columns of a data matrix, optimizing an MI loss function to uncover latent structures within 
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datasets. This framework has been particularly influential in text mining and bioinformatics, where 
data is inherently organized in two dimensions, such as documents and words, or genes and 
experimental conditions. By minimizing information loss in the clustering process, this method 
provides a more interpretable and structured representation of high-dimensional data.  

Further advancing the theoretical foundations of MI in clustering, [22] proposed 
Information-Theoretical Clustering via Semidefinite Programming. Unlike conventional 
clustering approaches, which often rely on heuristic optimization, this method employs 
semidefinite programming to ensure a globally optimal partitioning of data based on MI principles. 
The approach has shown effectiveness in areas such as image segmentation and social network 
analysis, where precise and stable clustering is crucial.  

In the domain of collaborative filtering, [23] introduced an Information-Theoretic Co-
Clustering approach to improve recommendation systems. Traditional collaborative filtering often 
suffers from sparsity issues, where users have rated only a small fraction of available items. By 
leveraging MI to extract shared patterns from user-item matrices, this method enhances 
recommendation accuracy by capturing both cluster-based preferences and rating similarities. This 
improvement makes it particularly valuable for applications in e-commerce and content 
recommendation platforms. A more recent contribution by [24] introduces Co-Clustering via 
Information-Theoretic Markov Aggregation. This method constructs a random walk on a bipartite 
graph, optimizing an MI-based cost function to extract meaningful co-clusters. By reducing 
information loss during clustering, this technique closely aligns with the IB framework, 
demonstrating superior performance in structured datasets like Newsgroup20 and MovieLens100k. 
Its effectiveness in real-world applications highlights the growing importance of MI-based 
clustering in data-driven decision-making and knowledge discovery. A new information-
theoritical distance measure for evaluating community detection algorithms was introduced in 
[25]. 

These contributions collectively reinforce the role of MI in clustering, from optimizing 
objective functions to handling complex, structured datasets. As research continues, integrating 
MI-based clustering with deep learning and representation learning frameworks remains a 
promising direction for uncovering intricate patterns in high-dimensional data. 
 
Regularization and Neural Networks 
 KL-Divergence plays a central role in generative models such as Variational Autoencoders, 
which are used to generate new data samples by learning the latent structure of the data. In this 
context, KL-divergence is used to regularize the latent space by ensuring that the learned 
distribution (the approximate posterior) is close to the prior distribution. The KL-divergence 
regularization term encourages the latent variable distribution to resemble a standard Gaussian 
distribution, promoting generalization and preventing overfitting [7]. By minimizing KL-
divergence, the model ensures that the learned latent representations are smooth and continuous, 
allowing for better generation of new data samples and improved model robustness. Beyond 
generative models, MI and IB principles have also been explored as regularization techniques for 
deep learning. [8] introduced an information-theoretic analysis of Deep Neural Networks, showing 
that training consists of two key phases: an initial empirical risk minimization phase, followed by 
a compression phase, where MI between the input and the hidden layers is gradually reduced. This 
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compression process aligns with the (IB) principle, acting as a form of implicit regularization. 
Their findings provide theoretical support for why deep networks generalize well despite 
overparameterization, suggesting that MI-based constraints naturally shape the learning dynamics. 
Expanding on this, [26] proposed a framework for learning deep representations by maximizing 
MI between input data and learned representations. Their method, Deep InfoMax (DMI), uses 
contrastive learning objectives to estimate MI and enforce high-information content in learned 
representations. Unlike traditional supervised learning, which relies on external labels, DMI 
ensures that learned features are task-relevant while filtering out noise. This MI maximization 
strategy has proven effectiveness in improving self-supervised learning, domain adaptation, and 
robust feature extraction, reinforcing the growing role of information-theoretic constraints in deep 
learning regularization. Cross-entropy remains the standard loss function for optimizing 
classification tasks, ensuring that models align their predicted probability distributions with true 
labels to achieve accurate predictions [27]. Together, these information-theoretic measures (KL-
Divergence, MI and Cross-Entropy) serve as fundamental tools in deep learning regularization, 
helping models generalize, reduce overfitting, and learn meaningful representations. 

The applications of IT in ML are both diverse and fundamental. Core concepts, such as 
entropy, MI, KL-divergence and Cross-Entropy, underpin a variety of crucial tasks in ML, from 
feature selection and decision-making to unsupervised learning and generative modeling. 

 
Metric and Deep Learning 
 MI and other information-theoretic measures play a fundamental role in Metric Learning and 
Deep Learning, guiding how models learn structured and generalizable representations. By 
leveraging entropy, divergence measures, and the IB principle, researchers have developed 
techniques, that enhance similarity learning, privacy-aware learning, and transfer learning. 
 A foundational contribution in metric learning comes from [28], where Information-Theoretic 
Metric Learning (ITML) was introduced. Their method optimizes a Mahalanobis distance metric 
by minimizing differential entropy, ensuring that similar points are pulled closer while maintaining 
constraints on dissimilarity. Unlike traditional distance-learning approaches, ITML leverages 
relative entropy constraints, making it more robust in high-dimensional feature spaces. This 
approach has influenced a range of applications, from face verification to text similarity 
measurement. Privacy concerns in deep learning have led to the development of information-
theoretic frameworks that balance data utility and confidentiality. 

[29] proposed a privacy-aware time-series data-sharing framework using Deep 
Reinforcement Learning. Their approach formulates data sharing as an optimization problem, 
where the agent learns an optimal information disclosure policy under privacy constraints. By 
integrating MI constraints, the model selectively reveals useful data while minimizing privacy 
risks, demonstrating its effectiveness in financial and healthcare applications.  

The theoretical foundations of Information-Theoretic Learning (ITL) were established in 
[30], introducing a framework for learning based on entropy and divergence measures rather than 
traditional statistical learning methods. ITL provides a more general approach to feature selection, 
clustering, and kernel methods, making it a precursor to modern information-based deep learning 
models. The use of Renyi entropy and Cauchy-Schwarz divergence in ITL offers an alternative to 
classical probability-based learning techniques, leading to more flexible and adaptive models. 
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Beyond individual learning paradigms, information-theoretic generalization bounds provide 
insights into the transferability of learned representations. [31] explored the role of MI in Transfer 
Learning, analyzing how information retained from the source domain affects generalization in 
the target domain. Results of this work highlight the importance of controlling information flow 
between layers in deep networks to prevent overfitting while maximizing knowledge transfer. This 
work establishes upper bounds on transfer learning generalization errors, making it highly relevant 
for domain adaptation and self-supervised learning. 
 Together, these studies illustrate the growing intersection between IT and Deep Learning, 
demonstrating how MI, entropy, and divergence measures drive advancements in metric learning, 
privacy-aware learning, and transfer learning. As deep learning models continue to evolve, 
information-theoretic regularization techniques are expected to play an even greater role in 
improving model robustness and interpretability. 
 
4. IB Framework Applications in ML 
 
The IB framework, first introduced in [32], has become a fundamental tool in ML by providing a 
principled approach to optimizing information flow in learning systems. IB offers a way to balance 
compression and relevance, formalizing the principle as an information-theoretic tradeoff between 
MI with the input and relevance to the target, ensuring that models retain the most essential 
information while discarding irrelevant noise. Over the years, IB has been applied across various 
ML domains, including representation learning, clustering, deep learning, privacy-aware learning, 
and image processing. The follow-up work [33] further refined the mathematical foundations of 
IB, emphasizing how different distortion measures impact information retention in learning 
systems. [34] expanded IB’s role in representation learning, showcasing IB's effectiveness in 
enhancing generalization for multi-agent systems. In the context of deep learning, in [35], the 
authors introduced Deep Variational Information Bottleneck, which extends IB by incorporating 
variational inference. This approach has been widely adopted in training robust and generalizable 
neural networks by enforcing a structured latent space that reduces overfitting and improves 
generalization. Similarly, in [36] information flow in Deep Neural Networks is explored, 
demonstrating how IB principles guide the learning process by distinguishing between 
representation compression and task-relevant information. In [37], IB is further analyzed for 
application in Convolutional Neural Networks, optimizing feature extraction and regularization. 
In [38], the authors explored IB for splitting composite neural networks, improving model 
modularity and efficiency. 
 The IB framework has also found extensive applications in image processing. In [39], IB is 
applied to image segmentation, optimizing feature selection for improved segmentation accuracy. 
In [40], the authors introduced the Residual Bottleneck Dense Network for image super-resolution, 
demonstrating how IB-based architectures enhance high-resolution image synthesis. In [41], IB is 
explored for compressed sensing image reconstruction, leveraging IB principles to enhance the 
quality of reconstructed images in resource-constrained environments. IB's role in 5G-LDPC 
decoding with coarse quantization is examined in [42], improving information retention in error-
correcting code applications. Additionally, in [43], Exponential IB Theory is applied to pedestrian 
attribute recognition, optimizing robustness against intra-attribute variations. 
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Beyond vision-related tasks, the IB principle has been successfully applied to a range of 
other domains, including clustering and feature selection [44],[45],[46],[47], geospatial learning 
[48], and multimodal natural language processing [49]. The IB framework has also been utilized 
in speech and audio processing [50],[51],[52], as well as in environmental monitoring and time-
series analysis [53], while continuing to play a central role in self-supervised visual representation 
learning [54]. 

In privacy-aware ML, IB has been utilized to balance data utility and confidentiality. A 
Privacy-Aware Joint Source-Channel Coding method based on Disentangled IB is introduced in 
[55], optimizing secure data transmission. Similarly, in [56], the authors proposed FIBNet, 
demonstrating how IB can prevent leakage of sensitive attributes while retaining necessary 
identification information. In [57], Robust IB feature extraction is explored, enhancing adversarial 
robustness in ML models. 

Several additional contributions have extended the application of the IB framework across 
diverse ML domains. In reinforcement learning and decision-making, Collaborative [58] and Two-
Way Cooperative [59] IB frameworks were introduced to optimize multi-agent systems under 
information-theoretic constraints. In the context of scheduling and optimization, an IB-based 
heuristic for job-shop scheduling is proposed in [60], demonstrating IB's utility in large-scale 
combinatorial problems. In [61], the authors applied tunable IB with Rényi measures to improve 
fairness and interpretability in classification tasks.  

As IB research continues to evolve, its applications across deep learning, clustering, privacy, 
and reinforcement learning highlight its broad impact in ML. Future directions include integrating 
IB with large-scale self-supervised learning and enhancing IB-based optimization techniques for 
more efficient model training. The increasing adoption of IB principles underscores its importance 
as a fundamental tool for structured and efficient learning in ML. For more details on this topic, 
we refer to a comprehensive survey [62]. 
 
 
5. Challenges and Limitations of IT in ML 
 
While IT has significantly contributed to the advancement of ML, its practical application is not 
without challenges. Techniques using entropy, MI, and KL-divergence offer powerful tools for 
managing uncertainty, optimizing models, and guiding decision-making. However, as ML models 
scale to handle ever-increasing amounts of data and complexity, several challenges emerge. 
 One key limitation is the scalability of information-theoretic measures, particularly when 
applied to high-dimensional datasets. Computing metrics like MI or entropy often becomes 
computationally expensive as the dimensionality of the data increases. For example, in [63] 
authors introduced MINE (Mutual Information Neural Estimation), a scalable method for 
estimating MI by using gradient descent over neural networks. While MINE improves scalability, 
it still faces computational challenges when applied to extremely large datasets or high-
dimensional input spaces, requiring efficient optimization techniques to ensure the model doesn’t 
become prohibitively slow. 

Another challenge is Approximation errors, as noted in [64], estimating MI accurately is 
difficult in practice, especially for continuous variables. MI is sensitive to the quality of the 
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probability distribution estimates, and small errors in density estimation can lead to significant 
misestimation of MI values. 
 Despite these challenges, efforts to address the limitations of IT in ML are ongoing. 
Researchers are continuously exploring ways to improve the scalability and accuracy of 
information-theoretic measures, particularly in high-dimensional spaces. For instance, 
advancements in approximation techniques, such as neural estimation methods like MINE, provide 
a promising foundation for mitigating computational constraints. Additionally, adaptive models 
that can handle noisy and imbalanced data more effectively, such as the IB framework, continue 
to evolve. 
 Moving forward, future work will likely focus on refining these methods to better suit real-
world datasets, particularly those characterized by non-stationarity and high dimensionality. By 
developing more robust estimation techniques and improving the adaptability of models in 
dynamic environments, researchers can further harness the power of IT to unlock its full potential 
in ML. 
 
6. Conclusion 
 
This survey has highlighted the critical role that IT plays in ML, providing a framework for 
managing uncertainty, optimizing models, and improving decision-making. Through the use of 
concepts like entropy, MI, and KL-divergence, information-theoretic approaches have enhanced 
various ML tasks. However, challenges such as scalability, approximation errors, and dependency 
on accurate data modeling remain key obstacles. 
 Addressing these issues through ongoing research and improved techniques will help unlock 
the full potential of IT in ML, driving future innovations and making models more robust and 
adaptable to complex, real-world problems. 
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Այս հոդվածում ուսումնասիրվում է Ինֆորմացիայի տեսության լայն 
կիրառությունները մեքենայական ուսուցման մեջ՝ ընդգծելով, թե ինչպես են 
հիմնական հասկացությունները օգտագործվում ուսուցման ալգորիթմները 
բարելավելու համար: Ինֆորմացիայի տեսության գործիքները ինտեգրվել են 
մեքենայական ուսուցման տարբեր ճյուղերում, այդ թվում՝ նեյրոնային ցանցերում: 
Մասնավորապես, Ինֆորմացիոն խցանի մեթոդը առաջարկում է պատկերացումներ 
տվյալների ներկայացման և «Ամրապնդող ուսուցման» վերաբերյալ, որտեղ 
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Аннотация 

 
В данной статье рассматривается широкое применение Теории Информации в Машинном 
Обучении, подчеркивается, как основные понятия используются для улучшения 
алгоритмов обучения. Техники Теории информации были интегрированы в различные 
подполя Машинного Обучения, включая нейронные сети. В частности метод 
Информационной пробки дает представление о данных, и обучение с подкреплением, где 
методы, основанные на энтропии, улучшают стратегии поиска. Кроме того, такие 
величины, как взаимная информация, имеют решающее значение для отбора признаков и 
обучения без контроля. Предоставляя последние достижения и обзор современных 
тенденций, эта статья связывает фундаментальную теорию с ее практической реализацией 
в современном машинном обучении. Мы также обсуждаем открытые проблемы и будущие 
направления, такие как масштабируемость, интерпретируемость, подчеркивая растущую 
важность этих методов в моделях нового поколения: масштабируемость, 
интерпретируемость, подчеркивая растущую важность этих методов в моделях нового 
поколения. 

Ключевые слова։   информационная пробка, нейронные сети, регуляризация на 
основе энтропии, взаимная информация, выбор характеристик, КЛ-дивергенция ․  
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 


