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Abstract

In this paper, we present deep learning-based blind image deblurring methods for
estimating and removing a non-uniform motion blur from a single blurry image. We
propose two fully convolutional neural networks (CNN) for solving the problem. The
networks are trained end-to-end to reconstruct the latent sharp image directly from the
given single blurry image without estimating and making any assumptions on the blur
kernel, its uniformity, and noise. We demonstrate the performance of the proposed models
and show that our approaches can effectively estimate and remove complex non-uniform
motion blur from a single blurry image.
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1. Introduction

Motion blur is one of the most undesired types of image degradation when taking photos. The
shake of the camera and the object motion during the exposure cause motion blurry images. Motion
blur is an undesirable effect, particularly in photography, and still is considered an effect, which
causes a significant distortion of an image. The process of recovering the latent sharp image from
a single motion blurry image or from a sequence of blurry video frames is called motion deblurring.
In practice, there are a large number of possible motion paths, and every motion-blurred image is
uniquely blurred, thus motion deblurring is a common and challenging problem nowadays.

A high-level representation of the blurring process is the following model
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b=1Q f+n, 1)
where | is the latent sharp image, f is the blur kernel, n denotes the noise, and & is the convolution
operator. In the presence of only one blurry image, the problem is called single-image motion
deblurring. In the case of multiple sequential blurry images, the problem is called multi-
image/video motion deblurring. Our interest is mainly related to single-image motion deblurring.

If the blur kernel or point spread function (PSF) is shift-invariant in the sense that blurring is
uniform, then the deblurring problem turns into the image deconvolution problem. When the point
spread function (PSF) is shift-variant and therefore the blurring is non-uniform, then it is
considered a deblurring problem.

Image deblurring is categorized as non-blind and blind cases. In the case of non-blind
deblurring, the blur kernel is known, or there is a way to compute it using some prior knowledge,
so the problem turns to estimate the latent sharp image given the known blur kernel. There are
some difficulties to overcome even though it may seem not a hard task. For example, the presence
of noise and possible ringing artifacts arising during deblurring make it a challenging problem.

There are some traditional methods such as Wiener deconvolution [1] which is expressed as

_ H*(f) S(f)
G(f) = IH(HI2 SO+ N’ (2)

where f is the frequency in the frequency domain, G is the Fourier transform of the estimated
kernel, which then is convolved with the blurry image to estimate the latent sharp image, H is the
Fourier transform of the blur kernel, N and S are the mean power spectral density of the noise and
latent sharp image respectively, = denotes the complex conjugation. Iterative Richardson-Lucy
(RL) [2, 3] deconvolution is another method, which is expressed as
B
JtHL = gt (PSFT ® (—1t®psp))' (3)

where It and It*1 are t™ and (t+1)™ estimations of the latent sharp image I, B is the blurry image
and PSFT is the flipped version of PSF.

These methods were presented decades ago. In further studies, the solution to the problem of
non-blind deblurring tends to be based on many famous image priors, for example, sparse priors
[4] and total variation [5], which have been introduced for regularization purposes to improve the
quality of deconvolution in the presence of noise.

The blind deblurring [6] is a more challenging problem since in this case the blur kernel or

PSF is also unknown in addition to the unknown latent sharp image. The blind deblurring problem
consists of two stages: the PSF estimation and non-blind deconvolution. In contrast to non-blind
deblurring, more sophisticated priors have been introduced here, such as norm-based prior [7],
dark channel prior [8], reweighted graph total variation prior [9], etc.
Image deblurring methods are also categorized as deep learning-based (DL) and non-deep
learning-based (non-DL) or optimization-based methods. Non-DL-based or optimization-based
methods try to reconstruct the latent sharp image by minimizing the energy function [10, 11],
using, for example, Gaussian or Poisson likelihoods in the scope of maximum-a-posteriori
estimation [12].

Even though non-DL-based methods are effective in image deblurring, they are usually based
on relatively simplified assumptions on the blur model compared with DL-based methods. It is
also worth mentioning the time-consuming hyperparameter tuning process for non-DL-based
methods, which is significant in real-world cases. In recent years, DL-based approaches have
become more and more applicable. DL-based methods use convolutional neural networks to
reconstruct the latent sharp image [13]. Also, recurrent neural networks are used for single image
deblurring [14]. In terms of both accuracy and efficiency, these methods exceed non-DL methods.
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So, we present deep learning-based blind image deblurring methods for estimating and removing
non-uniform motion blur from a single blurry image.

2. Dataset

A common practice for creating a dataset for supervised image deblur problems is to synthetically
generate blurry images by blurring latent sharp images with a kernel and then adding some noise
[15, 16]. However, the blurry images generated in this way may differ from a real blurry image,
and the dataset might not be representative enough.

A new kernel-free approach of dataset generation for supervised motion deblur problems was
proposed in [17]. They used a GOPRO4 Hero Black camera for dataset generation. They record
high-quality videos with 240 fps and then average sequential video frames of latent sharp images
to produce motion blurry images [18]. The corresponding latent sharp image for the generated
blurry image is chosen as the middle image of the sequence that is used to average and generate
the blurry image.

When the motion blur is caused by the motion of an object, the blurriest part of the blurry
image should be the object itself, leaving the background mostly the same as in the latent sharp
image. The proposed kernel-free dataset generation method [17] for supervised motion deblur
problems solves that problem unlike the other methods [15, 16].

We chose the GOPRO dataset [18] for training and evaluating our models. The dataset contains
3214 pairs of blurry and sharp images.

3. Proposed Methods

We propose two encoder-decoder architecture based fully convolutional neural networks.

The first one (ResnetEncDec) uses Resnet-50 [19] as an encoder. It receives a 3x256x256 RGB
image as input. The first step is a convolution with a 7x7 kernel with stride 2 followed by max-
pooling with stride 2. Then the Resnet-50 residual blocks follow, which use 1x1 and 3x3
convolutions. Each convolution layer is followed by a batch normalization layer [20] and ReLU
activation. The encoder part outputs a 2048x8x8 feature map, which is used as an input of the
decoder part.

The decoder part consists of transposed convolution and upsample layers. First, 3 decoder
blocks follow, each of which consists of a transpose convolution layer followed by 2 convolutions.
Then, 2 upsample layers follow, each of which performs a bilinear upsampling with a factor of 2
followed by 2 convolutions. Then, a 1x1 convolution follow to reduce the channels of the
activation map to 3. Then, a sigmoid activation follow to output colors in [0, 1] range for each
pixel of the output image. All the convolution and deconvolution layers are followed by batch
normalization and ReLU activation (except the last convolution layer, which is followed by
sigmoid activation).

The skip connections are used between the encoder and decoder layers inspired by the U-Net
architecture [21]. The architecture of the network is shown in Figure 1.

The next proposed network is inspired by the real-time style transfer method proposed in [22].
They propose using an image transform network (TransformNet) for the style transfer problem to
stylize the input content image with the style of the style image (Fig 2). Since the network
performed well on style transfer image to image problem, thus, being able to generate an image
that is some modified version of the input image, we proposed it for the motion deblur problem.
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Fig. 1. The architecture of the ResnetEncDec fully convolutional network.
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Fig. 2. The architecture of the style transfer network [22].
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The first layer of the proposed Transform Net is a 9x9 convolution with stride 1. Then two 3x3
convolutions follow with stride 2. Then, 5 residual blocks follow, each of which consists of two
3x3 convolutions followed by batch normalization and ReLU activation (Fig. 3). Each residual
block contains a residual connection between its input and output. After the 5 residual blocks, two
3x3 transposed convolution layers follow with stride 2. Then, a 9x9 convolution follow with stride
1. Finally, sigmoid activation follows to output colors in [0, 1] range for each pixel of the output
image. Each convolution layer is followed by batch normalization and ReLU activation (except
the last convolution layer, which is followed by sigmoid activation).

| Layer

| Activation size

Input

32 % 9 % 9 conv, stride 1
64 x 3 = 3 conv, stride 2
128 = 3 = 3 conv, stride 2
Residual block, 128 filters
Residual block, 128 filters
Residual block, 128 filters
Residual block, 128 filters
Residual block, 128 filters
64 x 3 % 3 conv, stride 1/2
32 % 3 » 3 conv, stride 1/2

(a)

3 % 9 x 9 conv, stride 1

3 x 256 x 256
32 % 256 x 256
64 = 128 = 128
128 = 64 = 64
128 = 64 = 64
128 = 64 = 64
128 = 64 = 64
128 = 64 = 64
128 = 64 = 64
64 = 128 = 128
32 » 256 x 2506
3 x 256 x 256

Batch Norm
| i

! RelLU

:

! [Batch Norm

(b)

Fig. 3. (a) The architecture of the TransformNet. [23] (b) The architecture of each residual block [23].

4. Training

Both proposed networks are trained on the GOPRO dataset with 256x256 resized images. Since
we want to minimize the pixel-wise differences between the output and latent sharp image in the
motion deblur problem, we chose MSE [24] and MAE [25] as loss functions:
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where N is the number of pixels in the image, y |s the pixel value of the sharp image and J is the
predicted pixel value.

Our experiments showed that MSE performs better for both of the networks, at least at the
early steps of training, so we used MSE for further experiments.
As evaluation metrics we chose PSNR (peak signal-to-noise ratio) [26] and MSE functions:

(6)

PSNR = 20log;o (*=t),

VMSE

where MAX; is the maximum possible pixel value of the image.

The Adam optimizer [27] was used with a learning rate of 0.001. Both networks are trained
for 350 epochs with batch sizes 15 and 44 for ResnetEncDec and TransformNet correspondingly
running on GeForce GTX 1070 Ti GPU. ImageNet [19] pre-trained weights are used to initialize
the ResnetEncDec encoder part. For TransformNet, training continued additionally for 250 epochs
with SGD optimizer [28] without momentum with a learning rate of 0.0001. However, it does not
lead to significant improvements.

The learning curves of both networks are shown in Figure 4.
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Fig 4. The learning curves of ResnetEncDec (a, b) and TransformNet(c, d).

5. Results

We evaluate the performance of our proposed models on the GOPRO dataset. The results are
compared with one of the state-of-the-art methods [17]. The quantitative performance comparison
of the proposed models is shown in Table 1 (note that we use 256x256 resized images, while in
[17] they use images with an original size of 1280x720).
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Table 1: Quantitative performance comparison of the models.

Metrics ResNetEncDec TransformNet Nah et al. [17]

PSNR 24.98 26.26 28.93

MSE 0.0033 0.00245 -

Some deblurring results are shown in Fig. 5.

In terms of performance and memory usage, the TransformNet and ResNetEncDec are
lightweight networks compared to [17], since [17] relies on a deep multi-scale architecture.

At the same time, as it is obvious from the architectures of the proposed networks, the

TransformNet is more lightweight and requires less computational time and resources than the
ResNetEncDec.

Input image ResnetEncDec result TransformNet result

Fig 5. The results on GOPRO test dataset.



50 Application of DL-Based Methods to the Single Image Non-Uniform Blind Motion Deblurring Problem

6. Conclusion

In this paper, two deep learning-based blind motion deblurring methods were presented to
reconstruct the latent sharp image from a single motion blurry image without having any
information about the blur kernel, its uniformity, and existing noise. The proposed methods, which
are encoder-decoder architecture-based fully convolutional neural networks, were trained,
validated and evaluated on the GOPRO dataset [18] (using 256x256 resized images) and compared
with one of the state-of-the-art methods presented in [17]. Based on the results shown in Table 1
and Figure 5, it becomes clear that the proposed methods can effectively remove complex non-
uniform motion blur demonstrating acceptable results. The code and results are available at
https://github.com/Mekhak/motion_deblur_dlI.

Future work should address improving the accuracy of the proposed methods.
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AHHOTAIIUA

B 37011 cTaThe MpeACTaBIAIOTCS CIENble METO/Ibl YCTPAHEHHUSI Pa3MBITOCTH N300paskeHUs
OCHOBaHHbIE Ha INTYOOKOM 00yYEHUH — JUIsI OLICHKH U yJaJIeHHs HEOJHOPOIHOTO Pa3MbITHSI BCIE]T
3a JIBUKCHHUCM U3 OOHOTO PasMbITOIO I/1306pa)i(eHI/I$I. I[JIH pCeUICHUA 3aJa4r MpCAiararoTcs ABC
MOJTHOCTHIO cBepTouHbIe HelipoHHble ceT (CNN). Cetn, mpeiHa3HAYEHHBIE )11 BOCCTAHOBJICHUS
HCXOJHOTO PE3KOT0 M300paKECHHSI U3 Pa3MBITOTO M300pakKeHHsI, 00y4alOTCsl MOTHOCThIO — 0e3
OLICHKM U KaKUX-JIMOO NPEINOJIOKeHUH O KEepHelleé pa3MbITHS, €ro OJHOPOJHOCTH U
IIPUCYTCTBYIOILETO IIyMa. JIeMOHCTPUPYETCS IIPOU3BOAUTEIBHOCTD MIPEAJIOKEHHBIX MOJCIIEH U
MOKAa3aHO, YTO MPEAJOKEHHbIE METOABl MOTYT 3(h(EeKTUBHO OLIEHWBATH M YCTPAHUTH CIOXKHOE
HEOJTHOPOJHOE Pa3MbBITHE BCIIE 32 IBHIKEHUEM M3 OJTHOTO PA3MBITOTO N300paKEeHHSI.

Kurouesble ciioBa: Pa3MbITre U3 3a ABM)KEHHUS, CJIETIOE YCTPAHEHUE PA3MBITOCTH BCIIE
3a IBUXKCHUCM, HCOAHOPOAHOC Pa3MbITHUC, KCPHCIT pa3MbITHS.
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