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Abstract

Sets of word tuples, accepted by multitape finite automata and a metric space
for languages accepted by these automata, are considered. These languages are rep-
resented using the same notation as the known notation of regular expressions for
languages accepted by one-tape automata. The only difference is the interpretation of
the ”concatenation” operation in the notation.

An algorithm is proposed for calculating the introduced distance between regular
languages accepted by multitape finite automata.
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1. Introduction

In 1959 M. O. Rabin and D. S. Scott introduced deterministic multitape finite automata
and the problem of equivalence for these automata [1].

The equivalence problem for two-tape automata was proved to be solvable in 1973 by
M.Bird [2]. In 1991 T. Harju and J. Karhumki proved the solvability of the equivalence
problem for deterministic multitape automata without any restriction on the number of
tapes [3] via a purely algebraic technique.

Many attempts were made to consider languages accepted by multitape automata. Some
notable from our point of view attempts are briefly discussed below.

In [4], B. G. Mirkin has considered a special coding for the sets of words tuples accepted
by multitape automata. The proofs and discussions are only for the case of n = 2 and there
are no explanations/proofs on how this will extend to the case of n > 2.

Another paper [5] by P. H. Starke is dedicated to the following result: ”An n-ary re-
lation R over W(X) is representable by a finite deterministic n-tape automaton iff there
exists an admissible regular expression 7" such that R = Val,(T)”. In the same paper the
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author mentions that ”Unfortunately there are non-admissible regular expressions 7' such
that Val,(T) is representable by a deterministic automaton”.

A special coding suggested in [6] is used in this paper. This coding was also used in [7]
to define regular expressions and regular events for multitape automata. The notation of
regular expressions for one-tape automata [8] was used as a notation for languages accepted
by multitape finite automata via interpreting the ”concatenation” operation differently.

Introduction of the special binary coding for elements of a free partially commutative
semigroup mentioned above leads to the consideration of multidimensional tape cells instead
of the semigroup elements. This, in turn, gives an opportunity to compare them as integer
vectors when analyzing behaviors of two automata on a given semigroup.

A metric is introduced based on these integer vectors. The metric intends to immerse
the knowledge on coding in the notion of distance between regular expressions.

The introduced metric has some boundary cases where its value is not adequate. To
adjust such cases, a new pseudo metric is introduced as an adjuster and is combined with
the former one resulting in a more suitable metric.

A polynomial algorithm is proposed for calculating the distance between regular lan-
guages.

2.  Preliminaries

Recall some definitions from [6, 9].

If X is an alphabet, then the set of all words in the alphabet X, including the empty
word, will be denoted X*, and the set of all n-element tuples of words will be denoted X™.

Let G be a free semigroup, generated by the set of generators Y = {y1,vs,...,yn}. G is
called a free partially commutative semigroup, if it is defined by a finite set of relations R
of type y;y; = y;v; [10]. We consider semigroups with identity elements (monoids) and use
the notation G = (Y | R).

Let K : Y* — {0, 1}”*, n = |Y'| be a homomorphism over the set Y*, which maps words
from Y™* to n-element vectors in binary alphabet {0, 1}. The homomorphism K over the set
of symbols of the set Y* is defined by the equation:

1, ifi=y,
K(yl) = (au, e 7ani>7 where ai; =4 € if YiY; = YjiYi,
0, if viy; # vy

At the same time K(e) = (e, ..., e).
K(y:y;), i # j is defined in the following way:

K(yiyj) = (aljalia . 7anjam')-

K maps the concatenation of semigroup elements a = v;, ...v;, and b =y;, ...y; in the
following way:

K(ab) = K((yu .. ylk)(yjl .. ‘yjl)> = (aljl Ce aljlalik TR 7(1an .. .anjlamk e (lml).

Lemma 1: [9] Let y;,y; be generators of G, vi # y;, ¢1 = Yiyj, 92 = y;y; be elements of G,
obtained after applying the operation of the semigroup G to generators y; and y;. Then

g = g2 = K(yyj) = K(yjy:)-
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This statement allows to consider the homomorphism K as a mapping not only over the
Y™, but also over the free partially commutative semigroup G.

An equivalence relation p over Y* is specified as follows. If w; and wy are words from Y™,
wi, we € Y*, then wypws if and only if w; and wy are representations of the same element
in G.

The relation p partitions Y* into disjoint classes. These classes are called classes of
commutation.

Lemma 2: [6, 11] Any free partially commutative semigroup of n generators is isomorphic
to some sub-semigroup of Cartesian product of n free semigroups with two generators.

According to Lemma 2, instead of elements of the semigroup G we can consider their
binary codings.

Any n-tuple of binary words can be considered as a tuple of integers (it will be denoted
Num(c,), where ¢, is the binary coded n-tuple of the semigroup element g). For that, we just
treat each non-empty binary word (components of the tuple) as the binary representation of
the integer (e.g., 010111 = 23) and use 0 for the empty word e [11].

Lemma 3: [11] Any free partially commutative semigroup of n generators is isomorphic
to some sub-semigroup of the n-dimensional space, where the semigroup operation is the
concatenation of integer tuples.

The multiplication of n-element tuples is defined as componentwise multiplication of
corresponding binary words - components of tuples. The multiplication of binary words
Bl = ,811 c. 517“ and BQ = 521 ce B?nz is defined as B1B2 = 52712 ce 621511 ce 61,11, i.e., the
concatenation of new letters to the source word B is performed starting from the leftmost
letter and is added to the left of the word Bs.

In [7], the coding with n-tuples of binary words is considered to define regular expressions
and regular events over a free partially commutative semigroup. These definitions allow to
apply the already known notation of regular expressions for the case of multitape automata,
however, the concatenation operation is interpreted differently.

Let R be a regular expression over a free partially commutative semigroup. By E(R) we
denote the regular event denoted by R.

For simplicity, we will use "word p belongs to regular event E” to indicate that "the
equivalence class [p] belongs to E”. Also, we will use the elements of the partially commu-
tative alphabet rather than their corresponding binary coded tuples in the notation of the
regular expressions. For instance, for Y = {y, 4>}, where y1yo = yoy1 by writing 1195 + v
we will mean (1,e)(e,1)* + (e, 1).

Next, we recall the definition of multitape finite automata (MFA).

Let Q be a finite set of states, X be an input alphabet, § : Q x X — 29 be the transition
function, gy € @ be the initial state and F' C @) be the set of final states. Assume that X
can be divided into disjoint, ordered subsets X = X; U...U X, such that X; N;; X; =0
and Vo, 2’ (v € X;, 2" € X;(i # j),xa’ = 2'z). Each subset X; corresponds to i-th tape.

Definition 1: [1] An n-tape automaton (MFA) is called a tuple A = (Q,T,X,0,qo, F),
where T = Q — {1,...,n} is a function associating each state from @ with a certain tape

and @ = U™ ,Q;, such that Q; = {q|lq € Q,T(q) =i} Vi=1,...,n.
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Automaton is called deterministic (DMFA), if Vg € @, Vx € X [0(q,x)| < 1. Otherwise,
it is called nondeterministic (NMFA).

An NMFA with ¢ transitions (NMFA-¢) is a tuple A = (Q,T, X, 0, q, F'), where § :
Q x (X U{e}) — 29

A path in an automaton graph [8] from an initial state to final state is called an accepted
path. A string formed by concatenating labels of all transitions in an accepted path, is called
an accepted extended word of multitape automaton [11].

An n-tuple of words (wy,ws, ..., w,) € [T X/ is accepted by an MFA A if and only if
there exists an extended word w € X* accepted by A, such that w; (i =1,...,n) is a word
obtained from w by removing all symbols of all subsets X, j € {1,...,n},j # 1.

The set of all n-tuples accepted by A is called the language of the automaton A and is
denoted by L(A). Two automata are called equivalent, if they accept the same language,
e, A = Ay iff L(Ay) = L(As).

Further, in this paper, we will only consider alphabets (and/or set of generators) X
satisfying the following condition: X can be divided into disjoint, ordered subsets X =
X1 U...UX, such that X; N;z; X; = 0 and Vz, 2’ (v € X;, 2’ € X;(i # j),za’ = 2'z).

3. Ek Distance

The result of Lemma 3 brings up a natural question of whether the Euclidean metric can be
applied to regular languages over free partially commutative semigroups. Obviously, it can,
however, the adequacy of such metric is questionable. To understand the issue of such a
metric, we may look at Fig. 2 and Fig. 3 of [11]. It is clear that each time adding the same
letter to the word moves it from 2"~! — 1 diagonal to 2" — 1 diagonal. For example, consider
the sequence e, y1, y3, y3, . ... The coordinates for its elements are (0,0), (1,0), (3,0), (7,0), ...
correspondingly, hence, the Euclidean distance between y™ and e is 2" — 1. In this section,
we will introduce a new metric, which will transform this exponential growth of difference
to a more natural and closer to linear one.

3.1. L Distance

Let G be a free partially commutative semigroup with n generators. Recall mappings Num
and K discussed in Section 2. Let Num' be the composition of K and Num, i.e., Num' :=
KoNum:G — R". Num,:G— 1R, (i =1,...,n) denotes the projection of the mapping
Num/(G) on the i-th axis of R".

Definition 2: Let g1, g2 be words in a free partially commutative semigroup G with n gen-
erators. The logarithmic distance between g1 and gs is denoted by L(g1,g2) and is equal
to

o Numi(g1) +1 o Num! (g1) + 1

L(g1.g5) = |1 4l .

L is well-defined, as Vi = 1,...,n,Vg € G Num/(g) + 1 is a positive number.
Before continuing the investigation of this metric, let us see why it has this form. Let us

consider the same sequence e, y1, y?, 43, ... with the corresponding coordinates (0, 0), (1,0),
(3,0), (7,0), .... The function lg? %, indeed, maps their exponential difference to

a linear one. Thus, L(yi,e) = L(y?,y1) = L(y3,9y3) = ... = 1, and generally, L(y",y¥) =
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|m — k|. Additionally, adding one in numerator and denominator prevents the values in both
of them from having the illegal value 0.

Lemma 4 below states that the defined distance is a metric on the free partially commu-
tative semigroup G.

Lemma 4: Let g1, go and g3 be elements of a free partially commutative semigroup G with
n generators, then

1. L(g1,92) =0 g1 = ¢a,
2. L(g1,92) = L(g2, 91),

3. L(g1,93) < L(g1,92) + L(92, 93)-

Proof. Let us prove each property separately.

1. The equality L(gi, g2) = 0 takes place if and only if 1g* % =0,Vi=1,...,n.

The later one is true if and only if Numl(g1) = Numi(g2), Vi = 1,...,n. After
combining all the i-s, we will find that L(g1,92) = 0 < Num/(g1) = Num/(g2). From
the fact that Num' mapping is an isomorphism follows that Num/(g;) = Num/(g2) <

g1 = Ggo.
2. The proof of the second property follows from

Numi(g1) + 1 Numi(g2) +1 .
— e = Jg = — Vi=1,...,n,
Numj(g2) + 1 Numj(g1) + 1

hence,
o Numi(g) + 1 R Numi(ga) + 1

Num/(gs) +1 & Numl(gy) + 1’

After combining all i-s, we get

o Numl(g o Numi(gs) + 1
B Wi 11\ B W 1

Num (92

3. Let us denote g1; := Num/(g;) and ga; := Num/(gs). We need to prove that

= gll+1 n 2g2i+1 n 291i+1
1g? + ] > ] . 1
J;g +1 ngg?ﬂ‘i‘l_ Zggsri-l (1)

Gg2; i=1 i=1

Let us square both sides of the inequality (1). We get

glz+1

= 2917, 2 92i 2glz+1 2927,+ 2
;g - +Z +1+2J21 - +1\IZIg " +1_Z ot 1 (2)

_|_

Also, it is trivial that

2
- i+1 - i+ 1 i+ 1
Sl i <1g91+ +1gdit ) (3)
i—1

= gutl g2i + 1 g3 + 1
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After putting the identity (3) into the inequality (2) and making some simple opera-
tions, we find that in order to prove (1) it is sufficient to show that

legggl JZ 292 - _Z g1i 92 ' (4)

= 9t 1I\iS o 9xu+t = 921+1 g3i+1

glz"l‘l

For simplicity, let us denote u; := lg po—) and v; ;= lg ZQZE The inequality (4) takes

the following form:

\/u%—i-u%%—...—i—u%\/v%—i-v%—l—...—l—v%Zulvl+u2vg+...+unvn. (5)

(5) is the well-known Cauchy-Schwartz inequality, hence, the third property is also
proved.

|

Next, we define logarithmic distance on the set of all regular events over a free partially
commutative semigroup by inducing Hausdorff metric from L [12]. This distance will be
called Ly distance.

Definition 3: Let Ey and Es be reqular events over a free partially commutative semigroup.
Ly distance between Ey and Ey is the quantity

Ly (FEy, Es) —rnax{sup inf L(ry,79), sup inf L(rl,rg)}.

ri€Fy ro€ ko roEFo ri1€k

In Definition 3 we assume that Lz can have the value oo.

For Ly metric to be well-defined, we assume that Ly (0,0) = 0 and Ly(0,P) =

The investigation of this metric shows that in most cases the evaluated distance of the
words over a free partially commutative semigroup is adequate, however, after applying the
homomorphism K o Num on some words of the same length they appear close to each other
on the same essential diagonal on IR™ [6]. For instance, consider the words a*b and b¥a,
where k € N. The logarithmic distance of these words is v/21g 21;751, which goes to 0 as
k — oo.

To adjust the introduced metric, we consider further a notion of a distance adjuster and
combine it with the Ly distance.

3.2. Adjusted L Distance

Let Y = y1,9s,...,y, be the set of generators of the free partially commutative semigroup
G. K:G — {0, 1}”* is the mapping from G into the semigroup of n-element tuples of
binary words. For a word g € GG, the binary word of zeros and ones derived from g replacing
all occurrences of the generator y; by one and all occurrences of other generators by zero is
called the mask for occurrences of generator y; € Y for the word g [9].

Let g € G, by d}(g) we will denote the n-element vector, for which i-th element is the
number of ones in the mask for occurrences of generator y; in the word g (Vi = 1,...,n).
Now, we define a distance adjuster between words in G.

Let g1, g2 € G. We denote the Euclidean distance between vectors df(g1) and df(g2) by

D(gb 92)-
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It is easy to check that D is a metric on {d}(g) | g € G}. However, it is a pseudometric
on GG. Indeed, consider the free partially commutative semigroup G' = (y1,y2). Let us
consider the words y;y, and ysy;. From the definition of the function di we have that
d?(y1y2) = d}(yey1) = (1,1). Hence, the distance D(y,y2,y2y1) equals to 0, despite the fact
that 1192 # yoy;. This means that the metric axiom d(z,y) = 0 < x = y does not hold.
Lemma 5 states that all pseudometric properties are satisfied.

Lemma 5: Let g1, g2 and g3 be any elements of a free partially commutative semigroup G
with n generators, then

1. D(g1,91) =0,
2. D(g1,92) = D(g2, 91),

3. D(g1,93) < D(g1,92) + D(g2,93).

Next we combine the metric L and the pseudometric D.

Definition 4: Let g; and gy be words in G. The vector (L(gi1,92), D(g1,92)) is called the
vector of adjusted logarithmic metric for the words g, and gs.

The first component of the vector of adjusted logarithmic distance is a value expressing
the difference in patterns of the words g; and g. Meanwhile, the second component is the
difference in the number of occurrences for each letter of the set of generators Y.

Definition 5: Let 91,92 € G. The Ly norm of the vector of adjusted logarithmic metric for
g1 and g 1s called an adjusted logarithmic distance between the words g1 and g and denoted
by L:

L(g1,92) = \/L(gh 92)% + D(g1, g2)*.

Theorem 1: The distance function L is a metric, in other words, let g1, g, and gs be the
elements of a free partially commutative semigroup G, then

1. E(gl,gQ) =0 g1 = g2,
2. L(g1,92) = L(g2, 91),
3. L(g1,93) < L(g1, 92) + L(g2, g3)-
Proof. The proof is based on the results of Lemma 4 and Lemma 5. From these two

lemmas we have that
(a) L(g1,92) =0 g1 = g2,
(b) L(g1,92) = L(g2,91),

a)
)

(c) L(g1,93) < L(g1,92) + L(g2,93),
)
)

(d
(e

D(gbgl) :()7
D(gl792> - D(92791)7
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(f) D(g1,93) < D(g1,92) + D(g2, g3)-

The truthiness of the properties 2 and 3 is obvious. Indeed, f/(gl, g2) = f/(gg, g1) follows
directly from (b) and (e), and L(g1, g3) < L(g1, g2) + L(ga, g3) follows directly from (c) and
(f).

Now, let us prove the property 1.

If L(g1,g2) = 0, then L(gy,g2) = 0. From the property (a) it follows that the latter can
hold only and only if g; = go. So, L(g1, 92) = 0 = g1 = .

Now, we prove the opposite. If g; = go, then from the properties (a) and (d) it follows
that L(g1,92) = 0 and D(g1, g2) = 0, consequently, L(g;, g2) =0. ®

3.3. Definition of iH and ik Distances

Once more, we use Hausdorff distance to induce the adjusted Ly metric on the set of all
regular events over a free partially commutative semigroup.

Definition 6: Let Fy and Es be reqular events over a free partially commutative semigroup.
Adjusted Ly distance between Ey and Fs is called the quantity

I:H(El,Eg) :max{sup inf E(Tl,’l"g), sup inf z(rl,rg)}.

rieE; T2€E2 ro€Ey TEE

~ We apply the following assumptions for Ly as well: Ly(0,0) = 0 and Ly (0, P) =

In Section 4 it will be shown that regular expressions over a free partially commutative
semigroup are representable as nondeterministic multitape finite automata. The equivalence
problem for the latter ones is proved to be unsolvable [1]. To be able to calculate the
distance between them, we have to be able to tell when their distance is 0, which is, as
already stated, unsolvable. Hence, the calculation of Ly is unsolvable, so, we introduce a
new distance, which takes into account the words accepted by regular expressions, having
up to some fixed length. This new distance is an approximation of L.

Denote by Wy, (P) (k € IN is a fixed number) the following subset of the regular event P:

Wi (P) = {plp € P, |p| <k},

where |p| is the length of the word p.

Definition 7: Let Ey and E» be reqular events over a free partially commutative semigroup.
Ly, distance between Ey and Ey for a fized k € IN is called the quantity

Li(Ey, Bs) = Ly(Wi(Ey), Wi(E2)).

It is obvious that Ly, is a pseudometric.

4. An Algorithm for Calculating the L; Distance

Denote by L(R) the language of n-tuples of words recognized by the regular expression R.
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Theorem 2: (On synthesis of MFA) There exists an algorithm, which synthesizes an
NMFA-¢ A from a given reqular expression R over a partially commutative semigroup, such

that L(A) = L(R).

One such an algorithm for synthesizing NMFA-¢ from a given regular expression might
be Thompson’s construction [13] used for synthesizing one-tape automata. Indeed, one can
casily show that this construction builds an NMFA-¢ A such that L(A) = L(R).

Consider regular expressions R; and Ry over a free partially commutative semigroup.
The following algorithm calculates the Ly (k € IN) distance between E(R;) and E(Ry).

1. Construct NMFA-¢ for Ry and R, using Thompson’s construction, i.e., A; and As,
correspondingly.

2. Find all the extended words accepted by A; and A, having length less than or equal
to k, i.e., Wi(A;) and Wy (A,), correspondingly.

3. Calculate Ly distance between the finite sets Wj(A;) and Wi(Az).

Now, we calculate the complexity of the proposed algorithm.

Let I; and Il be the numbers of operations (+,*,-) in R; and Ry, correspondingly. The
first step of the algorithm takes O(l;) time for R; (i = 1,2) and constructs an automaton
with at most 2[; states [13].

At the second step, the complexity of the construction of set Wi(A;) (i = 1,2) is
O ((21:)%*).

At the third step, we construct the binary codings of the words, then their corresponding
integer vectors. This takes cik time for a word having £ length, where ¢; is some constant.
The calculation of the distance between two integer vectors is com, where m is the number
of letters in the alphabet.

So, the overall complexity of the proposed algorithm can be estimated as O(km(2l; +
205)%).

5.  Conclusion

In this paper, a special binary coding of the elements in a free partially commutative semi-
group [6] has been considered. This coding is used to define regular expressions for multitape
finite automata and a distance, which is shown to be a metric. As the calculation problem
of this metric is unsolvable, in order to provide an approximate solution for this problem, a
modification of the metric was considered.

A method, having a polynomial complexity, was proposed for approximate calculation of
the distance between those regular expressions.
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aBTOMAaTOB. Kaxkpoe peryasipHOe BBIpa’K€HHE OIMCHIBAET $43BIK - MHOYXECTBO
KOPTEKeM CAOB, IPUHUMAEMBIX AQHHBIM MHOTOAEHTOUHBIM KOHEUHBIM aBTOMAaTOM.
Tak>ke pacCMOTPEHO MeTpuYeCKoe MPOCTPAHCTBO SA3BIKOB, NPUHUMAEMBIX MHOTO-
AEHTOYHBIMU KOHEUYHBIMM aBTOMAaTaMHU. OTU SA3BIKM IIPEACTABAEHBI C MTOMOIIBIO
TOU >Ke HOTAIlu{, KOTOPas HUCIOAB3YETCS B PEryASIPHBIX BBIPA’KEHUSIX AAS A3BIKOB,
pacno3HaBaeMbIX OAHOAEHTOYHBIMM aBTOMaTaMu. EAWHCTBEHHas pa3HUIla - B UHOM
WHTEepPIpeTalnu KaKAOU Oollepaluy 'KOHKAaTeHalusa'" HOTAIlWuu.

OnpepereHa MeTpUKA U THPEAAOKEH AATOPUTM AAS BBIUMCAEHUS PACCTOSHUS
Me>KAY PETYAIPHBIMU BhIPaKEeHUAMY, IPUHUMAEMbIMU MHOTOA€HTOUHBIMY KOHEUHBIMU
aBTOMAaTaMMU.

KAroueBEBIe CAOBA: MHOTOAEHTOUYHBIE KOHEYHBIE aBTOMATHI, PeTryAIpHbIE BEIPaKEeHN4,
MeTpHUYeCKOe MPOCTPAHCTBO.
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