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Abstract

Let G be a graph on n vertices with minimum degree §. The earliest nontrivial
lower bound for the circumference ¢ (the length of a longest cycle in G) was estab-
lished in 1952 due to Dirac in terms of n and ¢: (i) if G is a 2-connected graph, then
¢ > min{n, 20}. The bound in Theorem (i) is sharp. In 1986, Bauer and Schmeichel
gave a version of this classical result for 1-tough graphs: (i7) if G is a 1-tough graph,
then ¢ > min{n, 26+2}. In this paper we present an improvement of (i7), which is sharp
for each n: (7ii) if G is a 1-tough graph, then ¢ > min{n, 20 + 2} when n = 1(mod 3);
¢ > min{n,26 + 3} when n = 2(mod 3) or n = 1(mod 4); and ¢ > min{n,20 + 4}
otherwise.
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1. Introduction

Throughout this article we consider only finite undirected graphs without loops or multiple
edges. The set of vertices of a graph G is denoted by V(G) and the set of edges by E(G).
We use n, 6 and ¢ to denote the order of GG, the minimum degree and the circumference -
the length of a longest cycle in GG, respectively. A good reference for any undefined terms is
2].

The earliest nontrivial lower bound for the circumference was established in 1952 due to
Dirac [4] in terms of n and ¢:

Theorem A [4]: If G is a 2-connected graph, then ¢ > min{n,24}.

The bound 26 in Theorem A is sharp.

In 1973, Chvatal [3] introduced the concept of toughness. Since then a lot of research has
been done towards finding the exact analogs of classical Hamiltonian results under additional
1-tough condition instead of 2-connectivity - an alternative and stronger necessary condition
for a graph to be Hamiltonian.

The analog of the classical Theorem A for 1-tough graphs was established by Bauer and
Schmeichel ([1], 1986).
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16 A Sharp Improvement of a Theorem of Bauer and Schmeichel

Theorem B [1]: If G is a I-tough graph, then ¢ > min{n, 2§ + 2}.

The bound 260 + 2 in Theorem B is shown [1] to be sharp by constructing graphs of order
n = 1(mod 3) with ¢ = 26 + 2.

In this paper we show that the bound 26 + 2 in Theorem B is sharp if and only if
n = 1(mod 3). Furthermore, we present a sharp refinement of Theorem B, which is sharp
for each n.

Theorem 1: FEvery 1-tough graph is either Hamiltonian, or

20 +2 when n = 1(mod 3),
c>1< 204+3 when n=2(mod3) or n=1(mod 4),
20+4 otherwise.

To see that Theorem 1 is sharp for each n, let Hy, H,, ..., H, be disjoint complete graphs
with distinct vertices z;,y; € V(H;) (i = 1,2,...,h). Form a new graph H(t1,ts,...,11)
by identifying the vertices x1, xs,...,x, and adding all possible edges between vy, ys, ..., Ya,
where t; = |V(H;)| (i = 1,2,...,h). The graph H(6 + 1,5 + 1,6 + 1) shows that the bound
25 4+ 2 in Theorem 1 cannot be replaced by 26 + 3 when n = 1(mod 3). Next, the graphs
HO+2,0+1,6+1)and HO+1,6+1,5+ 1,5 + 1) show that the bound 2§ + 3 cannot be
replaced by 20+4 when n = 2(mod 3) or n = 1(mod 4). Finally, the graph H(d+2,5+2,5+1)
shows that the bound 20 + 4 cannot be replaced by 26 + 5.

2. Notations and Preliminaries

Let G be a graph. For S a subset of V(G), we denote by G\'S the maximum subgraph of G
with vertex set V(G)\S. We write (S) for the subgraph of G induced by S. For a subgraph
H of G we use G\H short for G\V(H). The neighborhood and the degree of a vertex
x € V(G) will be denoted by N (z) and d(x), respectively. Furthermore, for a subgraph H of
G and x € V(G), we define Ny(x) = N(x) N V(H) and dg(z) = |[Ng(z)|. Let s(G) denote
the number of components of a graph G. A graph G is 1-tough if |S| > s(G\S) for every
subset S of the vertex set V(G) with s(G\S) > 1. A graph G on n vertices is Hamiltonian
if G contains a Hamilton cycle, i.e., a cycle of length n.

Paths and cycles in a graph G are considered as subgraphs of G. If @) is a path or a
cycle, then the length of @, denoted by |Q|, is |E(Q)|. We write () with a given orientation
by 5 For xz,y € V(Q), we denote by xay the subpath of () in the chosen direction from
x to y. For x € V(C'), we denote the h-th successor and the h-th predecessor of x on c by

2" and 27", respectively. We abbreviate 7! and 2! by 2% and 27, respectively. For each
X Cc V(C), we define X* = {zT|r € X} and X~ = {27 |z € X}.

Special definitions. Let G be a graph, C' a longest cycle in G and P = x?y a longest
path in G\C' of length p > 0. Let &;,&s, ..., & be the elements of Ng(x) U Ne(y) occurring
—

on C in a consecutive order. Set
- * +_> _ .
[’i :g’icg’i-‘rb [z :fz C€’i+1 (/L: 1,2,...,8)’

where &1 = &;.
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(1) The segments Iy, Is, ..., I are called elementary segments on C' induced by N¢(z) U
Ne(y).

(2) We call a path L = »Lw an intermediate path between two distinct elementary
segments [, and I, if

zeV(I)), weV(Ly), V(L)NV(CUP) ={z,w}.

I

(3) Define Y(1;,, I; ;,) to be the set of all intermediate paths between elementary

219 7129
segments I, I;,, ..., I;,.

(4) If Y(I4,...,I5) C E, then the maximum number of intermediate independent edges
(not having a common vertex) in T(/y, ..., I) will be denoted by p(7T).

(5) We say that two intermediate independent edges w;jws, wswy have a crossing, if either
—
w1, W3, Wa, W4 OF W1, Wy, Wa, w3 occur on C' in a consecutive order.

Lemma 1: Let G be a graph, C' a longest cycle in G and P = x?y a longest path in G\C
of length p > 1. If |[No(z)| > 2, |[Ne(y)| > 2 and No(x) # Ne(y), then

= 35+max{01,02}—1235 Zf 1_7
©=) 46 —2p if D

where o1 = |Ne(x)\Ne(y)| and oy = |Ne(y)\Ne(2)|.

L,
2,

AV

Lemma 2: Let G be a graph, C' a longest cycle in G and P = x?y a longest path in G\C
of length D > 0. Let No(x) = Ne(y), |Ne(x)| > 2 and f,g € {1,...,s}.

(al) If L € Y(If,1,), then
s+ [Iy] > 2p + 2| L] + 4.
(a2) If Y(Ir,1,) C E(G) and |Y (I, I,)| =€ for some e € {1,2,3}, then
[f| + 1g| = 2p+ € +5,
(a83) If Y (Is,1,) C E(G) and Y (I, 1,) contains two independent intermediate edges, then

17| + 1| = 2p + 8.

The following result is due to Voss [5].

Lemma 3 [5]: Let G be a Hamiltonian graph, {vi,vs,...,v:} € V(G) and d(v;)) > t
(1=1,2,...,t). Then each pair x,y of vertices of G is connected in G by a path of length at
least t.
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3. Proofs
Proof of Lemma 1. Put
Ay = No(z)\Ne(y), A2 = Ne(y)\Ne(z), M = Ne(z) 0 Ne(y).
By the hypothesis, No(z) # Neo(y), implying that
max{|A4:|,|A42|} > 1.

Let &1,&, ..., & be the elements of No(x) U Ne(y) occurring on C in a consecutive order.
Put I; = fiﬁfiﬂ (1=1,2,...,s), where {;,1 = &. Clearly, s = |Ay| + |Az| + |M|. Since C is
extreme, we have |[;| > 2 (i = 1,2, ..., s). Next, if {&, &1} M # () for some i € {1,2, ..., s},
then |I;| > P+ 2. Further, if either & € Ay, &1 € Ay or & € Ay, &1 € Ay, then again
|Li| > 7+ 2.

Case 1. p=1.

Case 1.1. |4;| > 1 (i=1,2).

It follows that among Iy, Iy, ..., I there are |M| + 2 segments of length at least p + 2.
Observing also that each of the remaining s — (| M|+ 2) segments has a length at least 2, we
have

c>P+2)(|M|+2)+2(s—|M|—2)

= 3(|M| +2) + 2(JAs| + |A2| — 2) = 2|Ay| + 2|Az| + 3| M| + 2.
Since |A;| = d(x) — |[M| — 1 and |As| = d(y) — |M| — 1, we have
c¢>2d(x)+2d(y) — |[M|—22>30+d(z) — | M| — 2.
Recalling that d(z) = |M| + |A;| + 1, we get
c>30+ A —-1=30+0; — 1.
Analogously, ¢ > 30 + 02 — 1. So,
¢ > 30 + max{oy, 05} —1 > 34.

Case 1.2. Either |[A;] > 1,|As| =0 or |A;]| =0,]A42| > 1.

Assume w.l.o.g. that [A;] > 1 and |As] =0, i.e. [Ne(y)| = |M| > 2 and s = |A;| + |M].
Hence, among I, I, ..., I there are |M| + 1 segments of length at least p 4+ 2 = 3. Taking
into account that |M|+ 1 = d(y) and each of the remaining s — (|M| + 1) segments has a
length at least 2, we get

c>3(|M|+1)+2(s—|M|—1) =3d(y) + 2(|A1] — 1)

Z 36+ |A1| —1= 3(5+max{01,02}— 1 Z 30.

Case 2. p > 2.

Case 2.1. |A;| > 1 (i=1,2).

It follows that among Iy, I, ..., I there are |M| + 2 segments of length at least p + 2.
Further, since each of the remaining s — (| M| + 2) segments has a length at least 2, we get

c>@+2)(|M|+2)+2(s— |M|—2)
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={P-2)|M|+©2p+4M|+4)+2(|A1] + |A2| — 2)
> 2|Ay| + 2|As| + 4| M| + 2p.
Observing also that
| A + [M]+D 2 d(z), [Az]+|M|+D = d(y),

we have

2| A1] + 2| Ag| +4|M |+ 2p
> 2d(x) + 2d(y) — 2p = 46 — 2p,
implying that ¢ > 46 — 2p.
Case 2.2. Either |A;| > 1,|As] =0 or |41 =0, |As| > 1.
Assume w.l.o.g. that |A;] > 1 and |As| = 0, that is |[No(y)| = |[M| > 2 and s = |Ay|+| M].

It follows that among Iy, I, ..., I there are | M |41 segments of length at least p+2. Observing
also that |[M|+7p > d(y) > 9, i.e., 2p+ 4|M| > 45 — 2p, we get

c>(P+2)(|M[+1) = (P —2)(M|—1)+2p + 4| M|
> 2P + 4| M| > 46 — 2p. ]

Proof of Lemma 2. Let &,&, ..., & be the elements of N¢(x) occurring on C in a con-
=
secutive order. Put I, = §C&1 (1 = 1,2,...,s), where &1 = &. To prove (al), let
—
L e Y(Iy,1,;). Further, let L = z L w with z € V([}) and w € V([;). Put

— — — —
£ Czl =dy, |08 =dy, |§Cw| =ds, |wC&1| =dy,

— = = —
C'=&x Py, CzLwC¢;.

Clearly,
IC'| =|C| —dy —ds + |L| + |P| + 2.

Since C'is extreme, we have |C| > |C’|, implying that d; +ds > p+ |L| + 2. By a symmetric
argument, ds + dy > P + |L| + 2. Hence
4
il 1yl = >_di = 2D+ 2 L] + 4.
i=1

The proof of (al) is complete. To prove (a2) and (a3), let Y(If,I,) € E(G) and
|Y(Iy,1,)| = ¢ for some € € {1,2,3}.

Case 1. e = 1.
Let L € Y(If,1,), where |L| = 1. By (al),

\I¢| + |1, > 2p+2|L| +4=2p+6.

Case 2. € = 2.
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It follows that Y (If,I,) consists of two edges e, e2. Put e; = zywy and es = zows, where
{21, 22} C V(I3) and {wy, w2} SV (I).

Case 2.1. z; # 2z, and wy # ws.
Assume w.l.o.g. that z; and z, occur in this order on /.

Case 2.1.1. wy and w; occur in this order on /.

Put
— — —
s C 21l = dy, |21 C 2| = dy, |2 C&pia| = ds,
— — —
|€ng2| = dy, |w20w1| = ds, |w1 Cfg+1| = dg,
, — — — — —
C' = ff Czlwl CUJQZQ Cfg.fpyfg_;,_l Cff
Clearly,

C'| = [C] = dy — ds — ds + [{e1 }| + Hea}| + | P] +2
=|Cl —dy —dy —ds + P+ 4.
Since C' is extreme, we have |C| > |C’|, implying that ds + ds + dg > P + 4. By a symmetric
argument, dy + ds + d; > p + 4. Hence
6
|+ 1| => di >2p+8.
i=1

Case 2.1.2. w; and wy occur in this order on I,.
Putting
, — — — — —
C" =& Czwy Cwazp C&gu Pyyin C&y,

we can argue as in Case 2.1.1.

Case 2.2. FEither 2y = 25, wy # wy or 21 # 25, W1 = Ws.
Assume w.l.o.g. that z; # 22, w1 = w2 and 21, 23 occur in this order on [y. Put

— — —
1£r C 21| = di, |21 C 20| = da, |22 CEppa| = ds,
— —
|fgcw1| = dy, |w1 Cfg+1| = ds,
, — — —
C" =& Py&, C zyw C&,

" — — — —
C" =& Czoun C&prax Py&yn C&;.

Clearly,
|C'/| =|C|—di—ds+ |{er}| +|P|+2=|C|—dy —dy + P+ 3,

O = [Cl = ds — ds + [{ex}| + [P| +2 = |C| —ds —ds + P+ 3.
Since C' is extreme, |C| > |C’| and |C| > |C”|, implying that

dy + dy >p+3, ds + ds >p+3.
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Hence,
5
p|+ Iy =Y di>di+ds+dy+ds +1>2p+T.
i=1

Case 3. ¢ = 3.

It follows that Y(Iy,I,) consists of three edges e, es, e5. Let e, = zw; (i = 1,2,3),
where {21, 22,23} C V(I}) and {wy,wp, w3} C V(I7). If there are two independent edges
among ey, o, €3, then we can argue as in Case 2.1. Otherwise, we can assume w.l.o.g. that
wy = we = wy and 21, 2, 23 occur in this order on I;. Put

— — —
£ C 2| =dy, |21 C 2| =dy, |22C 23] = ds,

— — —
|Z305f+1| = dy, |€ng1| = ds, |w1 Cfg+1| = dg,
, — — —
C" = ¢&x Py, C zywy C&y,
— — — —
C" = ff C zyw, Cff+1$P3/fg+1 Cff-
Clearly,

IC'| = |C] —dy —ds + {er }| +P+ 2,

|C"| = |C| —dy — ds + [{es}| + D+ 2.
Since C' is extreme, we have |C| > |C’'] and |C| > |C”|, implying that

di+ds>p+3, dy+dg>p+ 3.

Hence,

[§
|+ | => di>di+di+ds+dg+2>2p+8 m
i=1

Proof of Theorem 1. Let GG be a 1-tough graph. If ¢ > 2 + 4, then we are done. Hence,
we can assume that
c <20+ 3. (1)

Let C' be a longest cycle in G and P = .1'1?1'2 a longest path in G\C. Put |P| =
|[V(P)|—1=p. If |V(P)| =0, then C is a Hamilton cycle and we are done. Let |V (P)| > 1,
that isp > 0. Put X = Ng(z1)U Ne(x2) and let &, ..., & be the elements of X occurring on
C' in a consecutive order. Put

— —
L=&C¢n, I =& C¢&,, (i=1,..3),

(2

where £,,1 = &;. Since G is a 1-tough graph, we have § > 2.

Case 1. p <9 — 2.

It follows that s > |Neo(z;)| >0 —Dp > 2 (i = 1,2). Assume first that No(z1) # Ne(z2),
implying that p > 1. If p > 2, then by Lemma 1, ¢ > 40 — 2p > 26 + 4, contradicting
(1). Hence p = 1, which yields 6 > p+ 2 = 3. By Lemma 1, ¢ > 36 > 9. If § > 4, then
¢ > 30 > 26 + 4, contradicting (1). Let 6 = 3. Next, we can suppose that ¢ = 9, since
otherwise ¢ > 10 = 30 + 1 = 2§ + 4, contradicting (1). Further, we can suppose that s > 3,
since No(z1) = Ne(z2) when s = 2, contradicting the hypothesis. Finally, we can suppose
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that s = 3, since clearly ¢ > 10 when s > 4, a contradiction. Thus, |I1| = |I5] = |I3] = 3 and
it is not hard to see that G\{&1, &, &3} has at least four components, contradicting 7 > 1.
Now assume that N¢o(z1) = Ne(x2). Since C'is extreme, we have

H .
L] > &z Pao&ipa| 2D+2 (i=1,...,5).

Case 1.1. s> 6 —p+ 1.
Clearly,

c=3) || =s(p+2)
i=1

> —p+10)P+2)=0—-P—2p+20+D+2. (2)
If p > 2, then by (2), ¢ > 260 + 4, contradicting (1). Let p < 1.

Case 1.1.1. p=0.

If Y(I,...,I,) = 0, then G\{&y,...,&} has at least s + 1 components, contradicting the
fact that 7 > 1. Otherwise Y(1,, ) # 0 for some distinct a,b € {1,...,s}. Let L € T(I,, ).
By Lemma 2(al),

\Io| + |1y > 2D+ 2|L| +4 > 6.

Recalling also that s > 6 —p+1 =0+ 1, we get

¢=S"|Ti| > L]+ 1] +2(s — 2) = 25+ 2 > 20 + 4,
i=1

contradicting (1).

Case 1.1.2. p=1.

By (2), ¢ > 36. We can suppose that § < 3, since ¢ > 36 > 2§ + 4 when 0 > 4,
contradicting (1). On the other hand, by the hypothesis, 6 > 7 + 2 = 3, implying that
0 = 3. By the hypothesis, s > 6§ —p+ 1 = 3. Next, we can suppose that s = 3, since
c>s(@+2)>12 =26+ 6 when s > 4, contradicting (1). Further, if Y(Iy, I5, I3) = ), then
G\{&1, &, &} has at least four components, contradicting 7 > 1. Otherwise Y(1,, I) # 0 for
some distinct a,b € {1,2,3}, say a = 1 and b = 2. Let L € Y([1,I5). By Lemma 2(al),

||+ [Lo] > 2P+ 2|L| +4 =38,
which yields ¢ > |I1| + || + |I3] > 11 = 2§ + 5, contradicting (1).

Case 1.2. s=0—].

It follows that z;xy € E. Then xle?xf is another longest path in G\C. We can
suppose that Ng(z;) = Ng(xf), since otherwise we can argue as in Case 1. By the same
reason,

Nc(l'l) = Nc(l'i_) = Nc(.I'TQ) = ... = Nc(l'g).

Since C' is extreme, we have |I;| > |§ix1?x2&+1| =p+2@G=1,...,5). fY(L,.. 1) =10,
then G\{¢1, ..., &} has at least s+ 1 components, contradicting 7 > 1. Otherwise Y(1,, I)) #
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() for some distinct a,b € {1,...,s}. Let L € Y(I,,I,) with L = ZleQ, where z; € V(I})
and zo € V(I}). By Lemma 2(al), |I,| + |I,| > 2p + 6. Hence

c=3"|L1 > L]+ L]+ (s = 2)(5+2) > s(P+2) +2
i=1

—(-P)F+2) +2=2+2+P(6—P—2). (3)
Claim 1. (al) 25+ 6 < |L| + |I,| <25+ 7 and |L| <P +5 (i =1, ..., ).
(a2) If |1, + |Iy| = 2p+ 7, then |I;| =P + 2 for each i € {1, ..., s}\{a, b}.
(a3) If |I,| +|Iy| = 2D+ 6, then |I¢| <P+ 3 for some f € {1,...,s}\{a,b} and |[;| =D+2
for each i € {1,...,s}\{a,b, f}.
(a4) If |I;| =P+ 5 for some f € {a,b}, then |[;| =P+ 2 for each ¢ € {1,...,s}\{f}.
(ab) For each distinct f,g,h € {1,...,s}, [If| + |I,] + |In] < 3D +9.
(a6) Y(I,,...,1,) C E.
Proof. If |If| > p+ 6 for some f € {1,..., s}, then

c=> L > ||+ (s—1)(P+2) >s(p+2)+4
i=1

=20+4+P(0—p—2)>2)+4,
contradicting (1). Next, if |I,]| + || > 2p + 8, then
c> LI+ L]+ (s—=2)p+2) > s(P+2)+4> 26+ 4,

again contradicting (1). Hence (al) holds. Statements (a2) — (a4) can be proved by a similar
way. To prove (ab), assume the contrary, that is |I¢| 4|1, + |In] > 3p + 10 for some distinct
f,g,h e {1,...,s}. Then

c=Y_|L| > I + | Ly| + |In]| + (s = 3) (P + 2)
=1

>3(0+2)+4+(s—3)P+2) =20 +4+D(s—2) > 25 +4,

contradicting (1). Statement (a6) follows from Lemma 2(al) and Claim 1(al). Claim 1 is
proved.

Claim 2. p+3<d; <p+4and p+3 <dy, <P+ 4, where

— — — —
dy = |8 C 21| + |6 C 22|, dy = |21 C&upa] + |22 C G-
Proof. Put . o .
Q = fal'l P.I'be CZ1Z2 Cfa.

Clearly, |Q| = |C|—d1+p+3. Since C' is extreme, we have |C| > |Q|, implying that d; > p+3.
By a symmetric argument, d > P+ 3. By Claim 1(al), |I,| + || = di +d2 < 2p+ 7. If
dy > D+ 5, then 2p+7 > dy + dy > P+ 5 + dy, implying that dy < P + 2, a contradiction.
Hence, d; <P+ 4. By a symmetric argument, dy <P+ 4. Claim 2 is proved.

Claim 3. If v; € V(fj?zf) and vy € V(zf?fa_ﬂ), then vivy € E.
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Proof. Assume the contrary, that is viv, € E. Put

— — — — —
Q = fa C vy C 2129 Cfa+1$1 P$2€b+1 Cfa,
—
|€a6>/01| = dl, |/U16>Z1| = d27 |Z1 CU2| = d37
— — —
|U2 C€a+1| = d47 |€bCZ2| = d57 |z205b+1| = dﬁ‘

Clearly, |Q| = |C| —ds — dy — ds + D + 4. Since C' is extreme, we have |Q| < |C|, implying
that dy + dy + dg > p+ 4. By a symmetric argument, dy 4+ d3 + ds > P+ 4. By summing, we

get
6

> di = L]+ || > 2p+38,
i=1
contradicting Claim 1(al). Thus, vyvy € E. Claim 3 is proved.

Claim 4. Let &, &,, &, occur on C in a consecutive order for some f,g,h € {1,...,s}
and wyw, € E for some w; € V(I}) and wy € V(I5). If N(ws) N {€s41,&} # 0 for some
ws € V(I}), then

— — — .
w1 C ] 4 1€ Cwa| 4 |€n Cws| 2 P+ 4.

Further, if N(w4) N {&s41,&,} # 0 for some wy € V(I;_,), then

— — — _
w1 C &rra| 4 1€ Cwa| 4 lwa C&p 2 P+ 4.
Proof. Assume first that w31 € E. Put

— — — —
Q = & Cwrws C&pan P sy C &py1wséy.

Clearly, . . .
Q| = |C| = w1 C&ppa| — |§g Cwa| — & Cws| +D+ 4.

Since |Q| < |C], the desired result holds immediately. If w,&s41 € E, then we can use the
following cycle

. N —s — — —
Q =& Cwiwg Cwalpy1 C g P a1 C&

instead of (). By a symmetric argument, the desired result holds when either w3, € E or
w4, € E. Claim 4 is proved.

Claim 5. Every two intermediate independent edges ey, e5 in Y (1, ..., I) have a crossing
with ey, ex € Y(Iy, I, I,) for some distinct f,g,h € {1,...,s}.

Proof. Let e, = wyws and ey = wsw,. We distinguish three different cases. First,
if e;,eo € Y(If,1,) for some distinct f, g, then by Lemma 2(a3), |I;| + |I,] > 2p + 8,
contradicting Claim 1(al). Next, if e; € Y(Iy,1;) and es € Y (I, I,) for some distinct
f,g,h,r, then by Lemma 2(al), |If| + |I,| > 2p + 6 and |I,| + |I,| > 2p + 6, implying that

c> Il 4+ ||+ |+ | +(s—4)P+2)=4p+ 12+ (s —4)(P+ 2)

=s(P+2)+4=20+4+D(6 —p—2) > 25 +4,
which again contradicts (1). Finally, let ey € Y(If,1,) and e; € Y(If, I;) for some distinct

—
,g,h. Assume w.l.o.g. that £¢,&,, &, occur on C' in a consecutive order and wq, w3 € V(I73),
g g frSg f
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wy € V(I5), wy € V(I;). We can assume also that w3 and w; occur on Iy in a consecutive
order, since otherwise e; and e, have a crossing and we are done. Put

— — — — —
Q = ff Cw3w4 Cw2w1 Cfgl'g P$1€h+1 Cff,

— — —
& Cws| = du, Jws Cwi| = do, |wi C&pia| = d,
— — — —
1§ Cwa| = du, w2 C&gia| = ds, € Cwal = de, |wiC&pia| = do.
Clearly, |Q| = |C|—dy—dy—d; +Pp+4. Since C is extreme, we have |Q| < |C], implying that

dy + dy + d7 > P+ 4. On the other hand, by Lemma 2, d3 +ds > p+ 3 and dy +dg > P + 3.
By summing, we get >.7_, d; = |I| + |I,| + |In| > 3p + 10. Then

(C1 = [l + gl + [T + (s =3)(P+2) = s(P+2) +4 = 20 + 4,
contradicting (1). Claim 5 is proved.

Claim 6. If () =1, then s < 3 and either £}¢,,, € E with §, = &1 or {;,,§ € E
with &1 =&. If u(Y)=1and s =3, then || = || = |I3] =D+ 3.

Proof. Since p(Y) = 1, either one of the vertices z1, 22, say 21, is a common vertex for all
edges in T(Iy, ..., I,) or 2123, 2023 € T(I4, ..., I,) for some z3 € V(I7) and f € {1,...,s}\{a, b}.

Case al. z; is a common vertex for all edges in Y (I4, ..., [5).
If 2 & {5, €1}, then by Claim 3, G\{&,...,&, 21} has at least s + 2 components,
contradicting 7 > 1. Let z; € {5, &1}, say 21 = &

Case al.l. 2§, , € E.
Tt follows that 2y # &, ,. By Claim 2, |&,C 2| > 5+ 2.

Case al.l.1. zlfb_fl ¢ FE.

It follows that |I,| > p+ 5. By Claim 1(al), |I,| = P+ 2. Moreover, we have |[,| =D+ 5,
|£b6>z2| =D+2, 2 =& and N(z1) NV (L) = {2}. By Claim 1(a4), |I;| = p + 2 for
each i € {1,...,s}\{b}. Next, by Lemma 2(al), Y(I,,I;) = 0 for each i € {1,...,s}\{a, b}.
Thus, if 21y € Y(I4, ..., I5), then y = 2o, implying that Y (I, ..., I;) = {z122}. Besides, since
|£b6>z2| =Pp+2> 2, we have 2z & {&,&,,,}. Therefore, by Claim 3, G\{&, ..., &, 22} has
at least s 4+ 2 components, contradicting 7 > 1.

Case al.1.2. z§, 7 € E.
It follows that |[;] > P+ 4. Assume first that |[,| =D+ 5. If ;&7 & E, then clearly
29 =& +21 and we can argue as in Case al.1.1. Otherwise the following cycle

— — .3 P
gaxl P$2€a+1 C€b+1z1€b+1 C ga

is longer than C', a contradiction.

Now assume that |[,| = P + 4, that is |€b6>€b_+21| =D+ 2 If 2,y € E for some
y € V(fbﬁfl;fl), then by Claim 2, |§b5>y| > p+2, implying that |I,| > p+5, a contradiction.
Hence, if z1y € Y(l,, ), then clearly y = fb_+21- In particular, we have z, = fb_+21- Further,
if 21y € Y(I,, If) for some f € {1,...,s}\{b}, then by Lemma 2(al), |I,| + |If| > 2p + 6,
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that is |I,| + |Iy| + || > 3p + 10, contradicting Claim 1(a5). Thus, z2 is a common vertex
for all edges in Y(Iy,...,I5). By Claim 3, G\{&1, ..., &, 22} has at least s + 2 components,
contradicting 7 > 1.

Case al.2. {f§,,, € E.
. — — —
By Claim 2, [ C'éaa| 2 P+ 2 and [$C& | =2 P+ 2. If {5 Ca| = P+ 3 and
—
& C & | > D+ 3, then |I,]| + || > 2p + 8, contradicting Claim 1(al). Hence, we can
assume w.l.o.g. that |§b6>£b_+1| =D+ 2, that is |[,| = p+ 3 and |[,| > P + 3. Further, we
have &¢,, & &1 € E (by Claim 4) and &¢F ¢ E (by Claim 2).

Case al.2.1. N(§) ¢ V(O).

Let Q = 5;50 be a longest path in G with V(Q)NV(C) = {&'}. Since C is extreme, we
have V(Q)NV(P) = 0. Next, since P is a longest path in G\C, we have |Q| < p+1. Further,
recalling that &7, & &1, &6 & E (see Case al.2), we conclude that v, v, 1, v € F,

as well. If vy ¢ E for each y € ( ;265,;1), then clearly

N(v) € (V(Q) U{&, ... &\ {&as &},

that is d(v) < |Q|+s—2<Pp+s—1=4§— 1, a contradiction. Now let vy € F for some
AN —

y € V(&2 C&, ). Assume that y is chosen so as to minimize | C'y|. Since C' is extreme,

we have |£;“6>y| > |Q| + 1. Further, since

—
INW)NV(yC&)l 20 = (s =2) = Q]
we have .
& Cénl Z QI+ 14200 —s+1-1Q))
=20—|Q|—2s4+3>20—-Dp—25s+2=p+2.
But then |I| > 7 + 4, a contradiction.
Case al.2.2. N(§") C V(O).
Since u(Y) =1 and &ES € E, we have
—
N(f[j_) g V( Ij_Q Cgb_—&-l) U {517 “‘758}\{&1751)-&-1}‘
If & # &iq, then d(&7) <P+ s—1=0§ — 1, a contradiction. Hence &, = & 1.
Case al.2.2.1. |[{| =P+ 2 for some f € {1,...,s}\{a, b}.
If N(&f) € V(C), then as indicated above,
—
d§7) <s =1+ O =P+s—1=0-1,
a contradiction. If N(&5) € V/(C), then we can argue as in Case al.2.1.

Case al.2.2.2. |[;| > p+ 3 foreach i€ {1,...,s}\{a,b}.
If s > 4, then

S

ICl=>"|L| > s(P+3)= 0 —D)(D+3)

i=1
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=204+ 25+4+(0—P—4)(P+1)>25+4,

contradicting (1). Hence, s < 3. Moreover, if s = 3, then by Claim 1(ab), |I1| = |I5]| = |I3] =
P+3.

Case a2. 2123, 2023 € Y([1, ..., I5), where 23 € V([}) and f € {1,...,s}\{a,b}.

—
Assume w.l.o.g. that &,,&, & occur on C' in a consecutive order. Put
— — —
|fa021| = dy, |Z1 Cfa+1| = dy, |fb022| = ds,

— — —
|20 C' 1| = da, |§ C 23| = ds, [23C Eppa| = ds.

By Claim 2,
di+d3>p+3, di+ds >p+3, do+dy >P+3,

do+de >p+3, ds+ds >p+3, dy +dg >p+ 3.

Summing up, we get
6

2> d; =2(|L] + || + |If]) > 6(p + 3).
i=1
On the other hand, by Claim 1(a5), |I,| + |Is] + |If| < 3(p + 3), implying that dy = dy =
.. =d¢ = (p+3)/2 and P is odd. Hence d; > 2 and using Claim 3, we can state that
G\{&1, ..., &, 21, 22} has at least s + 3 components, contradicting 7 > 1. Claim 6 is proved.

Claim 7. Either u(Y) =1 or p(Y) = 3.
Proof. The proof is by contradiction. If u(Y) = 0, then G\{&1, ..., &} has at least s + 1
components, contradicting 7 > 1. Let u(T) > 1.

Case al. u=2.
By Claim 5, Y(Iy, ..., I,) consists of two crossing intermediate independent edges wyw;y €
Y(Is,1,) and wswy € Y(If, 1) for some distinct f, g, h. Assume that both ¢, &, &, and

—
wy, w3, Wy, wy occur on C' in a consecutive order. Put

— — — — —
Q = ff Cw1w2 Cw4w3 Cfgl'g P$1€h+1 Cff,

— — —
£y Cwi| = dy, |wy Cws| = dy, |ws C&ia| = ds,

— — — —
&g Cwa| = dy, |wo C&gyr| =ds, [§nCwy| =ds, |wyC Epyr| = d.

Clearly, |Q| = |C| — dy — dy — d7 + D+ 4. Since |Q| < |C|, we have dy +dy +d7 > D+ 4. If
ds+ds >Pp+3and d; +ds > P+ 3, then 7, d; = \I¢| + |1,4] + 1] > 3D+ 10, contradicting
Claim 1(a5). Otherwise, either ds +ds < p+2or d; +ds <D+ 2, say d3 +ds <D+ 2.
Further, if either d7 = 1 or §, w3 € E, then by Claim 2, d3 > p+ 2, that is d3 +ds > D+ 3,
a contradiction. Hence, d7 > 2 and §, w3 ¢ E. By Claim 4, &, {11,660 € £, If
|I,| > P+ 4, then taking into account that |I¢| + |I,| > 2p + 6 (by Claim 1(al)), we get
\I¢| + |1, + |11 > 3p + 10, contradicting Claim 1(a5). Hence, || <P+ 3. By a symmetric
argument, |I;| <p+ 3.

Case al.l. N(§,,,) C V(O).
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If &, wo & E, then recalling that (1) = 2, we get

N(&r1) CV(wi C&2) U Ler, s N Eri1, 60}

implying that [N (&, )| <P+s—1=¢§—1, a contradiction. Now let £, ,w, € E. By Claim
1(al and a5), || = |I,| = |Is| = P+ 3. Moreover, by Claim 2, d5 =p+2 and d4 = 1. Then,
for the same reason, d; = p + 2, implying that |I,| > D + 4, a contradiction.

Case al.2. N(§,,,) € V(O).
We can argue as in the proof of Claim 6 (Case al.2.1).

Case a2. u(T) > 4.
By Claim 5, there are at least four pairwise crossing intermediate independent edges in
Y(Ii,...,1s), which is impossible. Claim 7 is proved.

Claim 8. If u(Y) = 1, then either n = 1(mod 3) with ¢ > 2§ + 2 or n = 1(mod 4) with
¢>20+3orn=2(mod 3) with ¢ > 26 + 3.
Proof. By Claim 6, s < 3 and either ¢, € E or ;1§ € F, say ,,,& € E.

Case al. s =2. _
It follows that § =p+s =P+ 2. Let a=1and b=2. By Claim 2, [ C&| > D+ 2

—
and |& C'& | > P+ 2, implying that [I] >p+3 (i = 1,2).

Case al.1. || =p+4 and || =P+ 3.

If V(G) =V (CUP), then n =3p+8 =35+ 2 = 2(mod 3) with ¢ = 2p+7 = 2§+ 3, and
we are done. Otherwise N(vy) € V(CUP) for some v; € V(CUP). Observing that zyz5 € E
and recalling that P is a longest path in V(G\C'), we conclude that v; ¢ V(P). Choose a

longest path @ = Ula?)g with V(Q) NV (C) = {v1}. Clearly, 1 < |Q| <p+1=09—1 and
N(vz) CV(CUQ).

Case al.1l.1. v; € V( ;“2651_).

By Claim 1(a6), N(vy) NV(IF) = 0, that is N(vy) C V(I;) U V(Q). Assume that
vy is chosen so as to minimize |1115>£1|, implying that N(vy) N V(Ulﬁff) = (). Clearly,
|1115>§1| <P+ 1. Then by Claim 4, 11§ ¢ E and therefore, 15§, € E, as well.

Case al.1.1.1. 1§ € E.

It follows that N(vy) C V(Q) U V(f;“?vf) U{&}. Since C' is extreme and 1§ € E, we
have |1115>§1| > |Q|+1. If N(vy) C V(Q)U{& 1}, then clearly |Q] > §—1 = p+1 and therefore,
|1115>§1| > P+ 2. But then || > P+ 4, a contradiction. Hence, N(vy) € V(Q) U {& }, that
is vy € E for some y € V(fj?vf). Assume that y is chosen so as to minimize |y5>1)1|.
Observing that |y5>1)1| >|Q|+1and § = |£5“5>§1| > 4, we get

—_—
& CGI>2(1QI+1)+2(6 - Q[ —2) =20 —2>0+2=D+4,
a contradiction.

Case al.1.1.2. 1& € E.
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It follows that N(vs) C V(Q)UV(EF Cor). If N(v) € V(Q), then |Q| > 6 =P + 2, a
-
contradiction. Otherwise voy € E for some y € V(& Cwv;y). Assume that y is chosen so as
— —
to minimize |y C vy|. Since |y Cvi| > |Q| + 1, we have

—
6 Co 2 |QI+1+2(6 1@ —1)=20—-1Q - 1=d=p+2.
But then |I| > 4, a contradiction.

Case al.1.2. v; € V(ffﬁf{g).

By Claim 1(a6), N(ve) N V(I3) = 0, that is N(ve) C V(Q) U V(I;). Assume that
v is chosen so as to minimize |§16>01|, implying that N(vg) N V(ff?vf) = (). Clearly,
|£15>111| <P+ 1. Then by Claim 4, v1& ¢ E and therefore, v:és € E.

Case al.1.2.1. (&2 € E.
By Claim 3, v1&5 € F, implying that v,&, ¢ E.

Case al.1.2.1.1. v¢; € E.

It follows that N(vy) C V(Q)U V(016>§2_2) U{&}. Since C is extreme and v2¢; € E, we
have |§15>111| > Q|+ 1. If N(vg) CV(Q)U{&}, then |Q] > 0 —1 =P+ 1 and therefore,
|§15>111| > P+ 2. But then || > P+ 5, a contradiction. Hence, N(vy) € V(Q) U {& }, that
is vy € E for some y € V(Ufﬁff). Assume that y is chosen so as to minimize |1115>y|.
Observing that |1115>y| >|Q|+1and § = |§15>§2_2| >4, we get

— _9 _
6 CE > 2(1QI+1)+2(0 — Q] —2) =20 —2> 6 +2=D+4,
a contradiction.

Case al.1.2.1.2. v, € E.

It follows that N(vs) C V(Q) UV (v, C&2). If N(vs) € V(Q), then |Q| > 6 = 7+ 2,
a contradiction. Otherwise vyy € E for some y € V (vf 652_ ). By choosing y so as to
minimize |v; €y|, we get

1 C&2 > QI +1+2(6— Q| —1) =26 —|Q| —1>5=p+2
This yields |1,| > P+ 5, a contradiction.

Case al.l1.2.2. &6° ¢ E.

If 1,6, € E, then as in Case al.1.2.1.1, |§16>§2_| > p+4, contradicting the fact that |I;| =
P+4. Otherwise, as in Case al.1.2.1.2, |1115>£2_| > p+2. Since |I;| = p+4, we have v; = &,
Q| =90—1=p+1 and vs = & . Moreover, we have N(Ug)j (V(Q)U{& })\{v2}. Further,

P

let v be an arbitrary vertex in V(Q)\{v1}. Put Q" = v; Qu v, Qu. Since Q' is another

longest path with V(Q') NV (C) = {v1}, we can suppose that N(v) = (V(Q) U {& })\{v}
—

for each v € V(Q)\{v,}. Furthermore, if £,y € E for some y € V(§2C &;?), then

§171 ?362525;52_@25@1 5>3/51
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is longer than C, a contradiction. Hence, {1y ¢ F for each y € V/( f26>£2_2). Analogously,
N
if y&, € E for some y € V(& C'&?), then

— L=
171 Paoboy C & Quaks & C&

is longer than C', a contradiction. Hence, y&, ¢ E for each y € V(ff?ff). But then
G\{&,&5} has at least three components, contradicting 7 > 1.

Case al.1.3. v; = &2
—
By Claim 1(a6), N(vy) C V(I}). If vy € E for some y € V(& C'vy), then we can argue
as in Case al.1.2. Hence, N(vy) C V(Q) U {&, &} If €y € E, then

— = =
§171 P 2o6ov, Qui&y &5 C&

is longer than C, a contradiction. Then clearly, v:§; € E and N(vy) C V(Q) U {& 1}
Furthermore, we have |Q)] > § — 1, implying that |§15>111| > |Q|+1 > 6. Since |§15>111| =0,
we have |Q| =0 —1=p+ 1 and N(ve) = (V(Q) U {&1})\{v2}. Moreover, as in Case 1.1.2.2,
we have N(v) = (V(Q) U {&})\{v} for each v € V(Q)\{v1}. Now consider an arbitrary
vertex y € V(ff?f{g) Clearly, |§15>y| <p+1. By Claim 2, y&& &€ E. Next, by Claim 4,
y& ¢ E. Further, if y&; € E, then

§171 ?52525352_3/652_25@251

is longer than C, a contradiction. Finally, since pu(Y) = 1, we have yv ¢ FE for each
—
v € V(ES2CE). But then G\{&1, &%) has at least three components, contradicting 7 > 1.

Case al.l1.4. v; = &;.

— —

If vov3 € E for some vy € V(2CEN) U V(& C65?), then we can argue as in Cases
al.l.1-al.1.3. Otherwise vyv3 € E for some vz € {&5,&5, &} If vy € {&, &5}, then we can
show, as in Case al.1.3, that G\{&,v3} has at least three components, contradicting 7 > 1.
Now let vy = £, . Consider an arbitrary vertex v € V(Q)\{v1}. Since C' is extreme, we
have N (v) N {&, &5} = 0. Next, if vy € E for some y € V(C)\{&1,&,&5,&5 }, then we can
argue as in Cases al.l.1-al.1.3. Thus, we can assume that N(v) C V(Q) U {&; }, implying
that |Q] >d—1=7P+1. Let w € V(ff?f{g). Since |§15>w| <p+1, we have w& € E
(by Claim 2) and wé& ¢ E (by Claim 4). Recalling also that u(Y) = 1, we conclude that
N(v) C V(&ﬁé;). If £5%6,,65%¢ € E, then clearly G\{&1, &5} has at least three compo-
nents, contradicting 7 > 1. Hence, either &2%¢ € E or £,%¢ € E.

Case al.1.4.1. &%, € E.

If &% € E, then G\{¢1,&,& } has at least four components, contradicting 7 > 1.
Hence, & %65 € E, that is (&,&,62,&5) is a complete graph. If V(G) = V(C U P U Q),
then n = 46 + 1 = 1(mod 4) with ¢ = 26 + 3, and we are done. Otherwise, as in previous
cases, we can show that 7 < 1, a contradiction.

Case al.1.4.2. {26 € E.
If &2%¢ ¢ B, then G\{¢1,&,&} has at least four components, contradicting 7 > 1.
Otherwise (&, &5, &2, &) is a complete graph and we can argue as in Case al.1.4.1.
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Case al.l1.5. v; € {&,6,65}
Since C' is extreme, we have vy & {&, &, ,& ) and therefore, we can argue as in Cases
al.l.1-1.1.4.

Case al.2. || = || =D+ 3.
We can show that n = 36 + 1 = 1(mod 3) with ¢ = 20 4 2, by arguing as in Case al.l.

Case a2. s = 3.
By Claim 6, |I,| = |I,| = |I3] =D +3 =0 and & &5 € E. If § > 4, then ¢ = 3§ > 2§ + 4,
contradicting (1). Hence § = 3 and therefore, p = 0. Put

C = Surwebswswa€swsweé,

where wows € E. Using Claims 2-5, we can show that

Nc(wl) = {w27€17€3}7 NC(wG) = {w57€17€3}‘

Analogous relations hold for wy, ws. If V(G\C) = {z1}, then n = 10 = 1(mod 3) with
¢c=9=20+3 > 2§ + 2, and we are done. Otherwise N(y) = {vi,vy,v3} for some
y € V(G\C)\{z1} with N(y) C V(C). Since C is extreme, it is not hard to see that either

N(y) = {wz, &, &} or N(y) = {ws, &, &} or N(y) = {1, &, 6} But then G\N(y) has at
least four components, contradicting 7 > 1. Claim 8 is proved.

Claim 9. If y = 3, then G is the Petersen graph, that is n = 10 = 1(mod 3) with
c> 20+ 2.

Proof. By Claim 5, Y([y, ..., I5) contains three pairwise crossing intermediate indepen-
dent edges e, es,e3. Let e = wiws, eo = wywy and ez = wswg. If wy, w3, ws € V(I}“)
for some f € {1,...,s}, then we can argue as in proof of Claim 7. Otherwise we can as-

sume w.lo.g. that wi,ws € V(I}), wo,ws € V(I;) and wy,ws € V(I;) for some distinct
N
f,9.h € {1,...;s}, where both &, &,, &, and wy, ws, ws, wa, wy, ws occur on C' in a consec-

utive order. By Claim 1(al and a5), |I;| = |I,| = |I4] = P+ 3 and |[;] = D+ 2 for each
ie{l,...,s}\{f.g9,h}. Put

— — —
£y Cwi| = dy, w1 Cws| = dy, |ws CE&ia| = ds,

— — —
|fgcw5| = dy, |w5 Cw2| = ds, |w2 Cfg+1| = dg,
— — —
|£wa4| = d7, |w4 Cw6| = dg, |w6 C€h+1| = dg.

Ifds+d; >p+3,di+d¢ >p+3 and dy+dy > p+ 3, then clearly |[f| + |[g| + |[h| > 3p+12,
a contradiction. Otherwise we can assume w.l.o.g. that ds + d; < p+ 2. Further, if either
dy > 2 or dy > 2, then we can argue as in the proof of Claim 7 (Case al.l). Hence, we can
assume that d; = dg = 1. By Claim 2, d;y = dg = 1. For the same reason, using the fact that
dy =dg =1, we get d3 =d; = 1.

Case al. Either &1 # &5 or Ep11 # &g or gy # Ene

Assume w.lo.g. that §uy1 # &f, implying that [[; 1| =P+ 2. By Claim 5, {;y ¢ F
for each y € V(IF) and i € {1,...,s}\{f — 1}. Moreover, by Claim 4, {;y ¢ E for each
y € {541, &} HEN(E) € V(C), then d(§;) < d — 1, a contradiction. Otherwise we can
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argue as in the proof of Claim 6 (Case al.2.1).

Case a2. {1 =&y, {1 = &gy §g1 = e
It follows that s = 3. Assume w.l.o.g. that f =1, g =2 and h = 3.

Case a2.1. Either dy > 2 or ds > 2 or dg > 2.

Assume w.l.o.g. that dy > 2, that is wi # ws. If p = 0, then |I;| = 3, implying that
dy = 1, a contradiction. Let p > 1. By Claim 4, wi &, w & € E. If N(w]) C V(C), then
by Claim 4, N(w;j") C V(wang) U {&}. Since |I;| =D + 3, we have |wf5>w3| <7p. But
then d(wy) <Pp+1= 0§ —2, a contradiction. If N(wi") € V(C), then we can argue as in the
proof of Claim 6 (Case al.2.1).

Case a2.2. dy =ds =dg = 1.

It follows that |I;| =3 (i = 1,2,3), that isp =0, 6 = 3 and ¢ = 9. Clearly (V(C)U{xz1})
is the Petersen graph. If V(G\C) # {x1}, then it is not hard to see that ¢ > 10, a contra-
diction. Otherwise, n = 10 = 1(mod 3) with ¢ =9 =26 + 3 > 26 + 2. Claim 9 is proved.

Thus, the result holds from Claims 7,8,9.

Case 2. p=6 — 1.
Clearly, |[No(z;)| > 1 (i = 1,2).

Case 2.1. z1y1, 12y2 € E for some distinct yy,y2 € V(C).
We distinguish three main subcases.

Case 2.1.1. There exists a path Q) = zay with z € V(P), y € V(C)\{y1,y2} and
V(@) NV(CUP) ={zy}. .
Assume w.lo.g. that y € V(y; C'yy). Since C is extreme, we have

— — — — —
ly1 Cyl > e Pzl +2, [yCuys| > |2 Paa| +2, |2 Cyn| > 6+ 1.
Summing up, we get |C| > 20 + 4, contradicting (1).
— — —
Case 2.1.2. There exists a path Q = 2Qy with 2 € V(y{ Cyy), vy € V(y3 Cy;) and
V(@) NV(CUP) ={zy}.
By Claim 1(al), |C| > 2p+ 6 = 2§ + 4, contradicting (1).

Case 2.1.3. G\{y1,y2} has at least three components.
It follows that 7 < 1, contradicting the hypothesis.

Case 2.2. N¢(z1) = Ne(x) = {y} for some y € V(C).
It follows that

N(a1) = (V(P) U{yP)\{z1}, N(zz) = (V(P)U {y})\{z2}.

Moreover, xlﬁv_:@??) is a longest path in G\C for each v € V(xf?xg) Since G is 2-
connected, we have wz € E for some w € V(P) and z € V(C)\{y}. If w = 1, then using the
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— — «—
path zx; P xoy, we can argue as in Case 2.1. Otherwise we can use the path yz; Pw™xy Pwz.

Case 3. p > 0.
Case 3.1. z1y;, 2y € E for some distinct yy,y, € V(C).

Clearly, |y16>y2| > 0+2 and |y26>y1| > §+2, which yields |C| > 20+4, contradicting (1).

Case 3.2. N¢(z1) = Ne(xe) = {y} for some y € V(C).
Let y1,%2, ..., y: be the elements of Nj(x3) occurring on P in a consecutive order. Put
N
H = (V(y; Pzy)) and
— «—

Since P; is a longest path in G\C for each i € {1,...,t}, we can assume w.l.o.g. that P is
chosen so as to maximize |V (H)|. If y;z € E for some ¢ € {1,...,t} and z € V(C)\{y},
then we can argue as in Case 3.1. Otherwise N(y;) C V(H)U{y} (i = 1,...,t), that is
INg(y;)| >0 —1 (i =1,...,t). By Lemma 3, for each distinct u,v € V(H), there is a path
in H of length at least 6 — 1, connecting u and v. Since G is 2-connected, H and_)C are
connected by two vertex disjoint paths. This means that there is a path @ = y; Qyo of
length at least § + 1 with V(Q) NV (C) = {y1,y=}. Further, we can argue as in Case 2.1.

Case 3.3. Either No(x1) =0 or No(z2) = 0.
Assume w.lo.g. that No(z1) = (). By arguing as in Case 3.2, we can find a path
—
Q = y1 Qys of length at least § + 2 with V(Q) NV (C) = {y1,92}, and the result follows

immediately. Theorem 1 is proved. [
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Pwmbph L Ciwjjubiih pinptdh jwjugnid
d. Lhynnnujwa

Udthnthnid

Qhgnip G-G n ququp L 0 GJuquagniy wuwmhdwl niGhgnn qpud k' Gpudh
wudtGwbtpwn ghyh ¢ Gpupnipjul wnwohlG ny wwnpgniGuly qGwhwnwlwip vnwgty L
Shpwyp (1952). (1) Gudwjwwl 2-juuyuygdud gpudnid, ¢ > min{n, 26 }: Uju wpynilpn
1986p-hG Pwnitipp L Clwjfubipn ;wywgnpbtghl 1-Yynpwn gpudltph hwdwn. (i) Gudwjulwd
1-4ynpun gpudmy, ¢ > min{n, 20+2}: Unwgywo tpynt qGwhwnwluGitn t hwuwbbh GG
n wupwitnph npnpuwh wpdbpltph hwdwnp: ‘Lipjw wuwwmwlpnd ptpynid E Rwnibph
L Cdwjhutih qGwhwwwlwbh dh jwyugnd, npp hwuwGtih £ 7 wupuitnph guliuguo
wndbph ntiypniy:

YayunreHue TeopeMul bayepa u llIMenxens
7K. Hukorocsaun

AnHoTanuys

[MTycts G ABASIETCSI n BEPUIMHHBIM IrpadoM C MUHUMAABHOU CTelleHbio . B 1952r.
AMVpaK IIOAYUYMA NIEPBYIO HETPUBUAABHYIO OLIEHKY AASL AAMHBL ¢ AAMHHEUWIIIEro ITUKAQ
rpacda G: (i) B aroGom 2-cBsizHOM Tpade, ¢ > min{n,2§}. Oy onenky B 1986r. Bayep
u llImerixearp yAydmiuAu AAS 1->KecTkux rpados: (ii) B aro6om 1->kecTkoMm rpade,
¢ > min{n, 20 + 2}. TloAyueHHBIe OLIEHKU AOCTUTAeMBI AAST ONPEAEACHHBIX 3HaUeHUH
rapamMeTrpa n. B HacToguel paboTe IIpepraraeTcd yAydllleHHWe OlleHKU bayepa u
[IImerixeAbs1, KOTOPOE HeyAyUlllaeMa AAS BCeX 3HQUEeHUM ITapaMeTpa n.



