Mathematical Problems of Computer Science 39, 72--80, 2013.

Verification Environments for USB Controller
Grigor Y. Zargaryan

Institute for Informatics and Automation Problems of NAS of RA
e-mail: grigorzargaryan@gmail.com

Abstract

The complexity of electronic devices with the everyday growing requirements
is constantly increasing. Sowtfare/Hardware (SW/HW) integration, validation and
reducing time to market have become one of the major bottlenecks in the design and
verification flow. This paper presents the main ways of design and verification flows
with their advantages and disadvantages for USB 3.0 controller. It discusses the
design flow with the combination of simulation and prototype-based design and
presents a simulation-based verification and also two types of field-programmable
gate array (FPGA) based verification environments with their advantages and
disadvantages. The design done with this flow will enable system on a chip (SoC)
designers to develop a high-quality USB 3.0 silicon solution to meet the growing
market demands in a timely manner.

Keywords: universal serial bus, verification, simulation-based
verification, FPGA-based verification.

1. Introduction

As electronic devices have already combined a lot of different functions, the market requires
more and more new functionalities. However, it poses problematic issues such as a long development
time and a hard design verification due to the increasing chip complexity. Another challenge also
rises - to verify the complex design efficiently and timely under the situation the time-to-market is
decreasing exponentially [1]. The dependencies of hardware and software result in an intricate
relationship between the different company types. Fig. 1 shows the research results on failure types
on the failing first silicone provided by Collett International [2].

Verification techniques can be classified into a simulation-based method and an emulation-based
method [3]. In the simulation-based method, even if it has an advantage of being able to verify the
design exactly and minutely, an excessively long simulation time is required. By using Register
Transfer Level (RTL) HW models simulation, the verification times have increased to the level when
they now take up to 70% of the device design time [4, 5]. In the emulation-based method, since it
needs a certain emulation system such as a FPGA board, the board development time is added to the
design verification time [6]. It is necessary to make a useful environment and to establish an efficient
verification methodology for FPGA-based verification.

When RTL is largely verified and stable, the software development ramps up. It is split between
OS support and porting, a low-level software development and a high-level application software

72

G. Zargaryan 73

development. All the software development efforts consume 40% of the total cost for 27 months
design[7]. When amortizing development and production cost onto expected sales, this project
reaches break even after 34 months, i.e. seven months after the product launch but almost three years
after the starting product development. The challenges in this example are that we have to predict
nearly three years in advance what is going to be sold in high-volumes in order to specify our chip.
How can this almost intolerable situation be made easier? The answer is to “start software sooner”. If
software development and validation started seven months earlier and subsequently the time to break
even would have been reduced by five months. Additional revenue gain could be expected over the
production volume due to submit to market design earlier than other similar products.

So it is extremely important to decide most appropriate development and verification flow to
ensure the product success on the market and deliver high-quality, verified designs.

IC/ASIC Design Failures
Failing First Silicon
(by failure type)
70%
60%
50%

40%

30%
20%
||IIII
0% -
B {\

Figure 1. Failure types on the first silicone.

2. Simulation-Based Verification

The simulation-based verification model is one of the most popular and effective ways for
functional verification. The simulation-based design requires more than just “a simulation tool”.
Depending on the complexity of the system, the design process may require many tools, many ways
to link the tools together. The simulation environment that supports the design process should be
flexible enough to disaggregate a complex system into any number of smaller pieces and conversely
to aggregate independent objects into a complete representation of the system. It should, as much as
possible, reduce the degree of complexity for the concept designer. This means that a graphical
interface is essential, that energy couplings between the system components should be automatically
and transparently handled, that the existing models should be reusable and that the rapid iteration of
the design cycle and incremental refinement of the system should be supported on a group-wise basis
[8].

Several approaches have been developed to reduce the simulation time and to increase the
verification quality. One of the methods to reduce the device design time is the Transaction Level
Modeling (TLM) [4]. It can be used for HW/SW modeling, co-design and co-verification. Another
reason to use TLM model is the availability to start SW development at an early stage.

74 Verification Environments for USB Controller

2.1 Simulation-Based Verification Environment

The verification environment is needed, which will allow us to run simulations and fix issues. USB
host/device controller verification environment consists of a device under test (DUT), USB
verification IP (VIP) and PCle VIP (Fig. 2). It is possible to use other VIP instead of PCle VIP, such
as AXI/AHB/AMBA depends on what bus will be used next to the controller. If the design is
implemented on the FPGA or on the ASIC, then DUT can be the top for this design, including USB
controller and other necessary modules. Verification runs as follows: each transaction is a
combination of a request and response. VIP starts the transaction by sending a request and waiting
for an appropriate response. Simulation tests pass when all the required requests are sent and the
responses are received.. VIP generating test vectors using SystemC, which allows to short
verification time. Figure 3 provides a part of SystemC code which compares the data transferred
between the device and the host using USB simulation environment. After running simulation the
.vpd file can be used for debugging. The DVE tool provides graphical user interface which allows
performing debugging in effective ways. Figure 4 shows ssrxp, ssrxn, sstxp, sstxn and ssclk states of
the signals after performing simulation. The ssrxp, ssrxn, sstxp and sstxn signals are external
connections and responsible for date transfer on Super Speed mode.

USB VIP DUT PCle

= =

Figure 2. USB verification environment.

$display(" Data comparison(Tx and Rx Buffers) after transfer is done... @", $time);
first = 0;
for(j=0; j < dut_number of trbs; j=j+1) begin
for(i=0; 1 < dut_bytes per trb/4; i=i+1) begin
tmp data32 = start data + 1*step;
k=(G*1280) + i;
tmp data2 = {32'h0, mem[3+4*k], mem[2+4*k], mem[1+4*k], mem[4*k]};
if(first == 0)
$display("First Location-A: Rx buffer data= %h; Tx buffer data= %h",
tmp data2[31:0], tmp_data32, $time);

first =1;
if(tmp_data2[31:0] !==tmp_data32) begin
fail=1;

$display("Data Mismatch; expected= %h; received= %h @%t", tmp data32,
tmp_data2[31:0], $time);
end
end

end

end
if(fail==0)

print_banner(" Comparison Passed ");
else

print_banner(" Comparison Failed ");
end

Figure 3. System C code performing comparision of transferred data.

G. Zargaryan 75

i T
i MHImmmmum

Figure 4. Simulation diagrams

3. FPGA-Based Verification

FPGA-Based Prototyping accelerates the creation of an ASIC prototype with high-speed
hardware prototyping systems including a software flow for the conversion of ASIC RTL into one or
more FPGA ICs. FPGA-based prototypes provide cycle-accurate, high-performance execution and
real world interface connectivity prior to tape-out of test chips.

In the effort to reduce Time-To-Market (TTM) engineering organizations continue to seek ways
to develop hardware and software in parallel. Advanced ASIC prototyping techniques enable a more
parallel development methodology. And firms, which have achieved more concurrent engineering
practices, have not only reduced the time to product introduction, but additionally reduced Product
Support & Maintenance effort during the product’s Time in Market due to higher quality.

The sooner the real Software Development begins, the more feasible it will be to make progress
on the Integration & Test, and validation phases prior to the tape-out milestone (Fig. 5).

From the aspects of debugging and control capabilities, the virtual platforms or any simulation
allow much easier ways than FPGAs. But on the other hand, FPGA allows much debugging and
control capabilities than the actual silicon provides when available. To allow debugging on FPGA
boards before running synthesis it is necessary to define which signals will be used for debugging.
Also additional tools are required to grab debugging signals from FPGA platform. If some additional
wires or signal are needed for debugging which are not defined before the synthesis, it will be
necessary to define and rerun the synthesis again. Also it is recommended to start FPAG
implementation after RTL verification has stabilized due to the efforts of mapping the RTL to
FPGA-based prototype. For the same reason it is not useful for hardware/software co-development.
Prototyping provides powerful methods for validating the design of hardware and software in
models. FPGA-base prototyping is specifically useful during the hardware and software integration.

Nowadays FPGA technologies allow high density, high speed, broad bandwidth, low-voltage,
low-power and low cost. There are built-in IP cores, which can extend the application area and
shorten the cycle of R&D. More functional cores like networking, audio, video and image can be
integrated into a single FPGA chip.

76 Verification Environments for USB Controller

Traditional How

Development Efort)

Time to Market Time in Market

N
*g ..with Advanced ASC
W= Hgher Prototyping Method:
m Productivity eI e
c

S)

£ XY Higher Quality
s

S ‘

>]
8 g

Timeto Market3 Time in Market

Figure 5. Terms Reduce Time-To-Market

3.1 FPGA Implementation

The FPGA-based verification environment consists of PC, PCle cards, FPGA board and USB
physical layer (PHY) (Fig. 6). An appropriate OS will be loaded on the PC with the controller driver
and high level applications. The PCle bus will make a connection between PC and FPGA board.
FPGA board is connected to USB PHY with a parallel interface, such as PIPE3, ULPI and UTML
USB PHY layer contains an analog receiver, transceivers and convert sequential data into parallel.
This type of environment will allow easy software debugging.

Figures 7 and 8 present host’s and device’s logical components. Host includes the following:
USB Host Controller, Aggregate USB System Software (USB driver, host controller driver and host
software), Client. Device includes the following: USB bus interface, USB logical device,
Function[9]. On the market there are few companies that provide tracers for packet level debugging.
There are PCIe and USB tracers which can be used for more effective debugging. Figure 9 shows an
example of USB 3.0 trace recorded on this type of environment.

PC FPGA USB
A-N PHY

AN
) I 4 Y

Figure 6. USB controller implementation

G. Zargaryan 77

Hist Physical Device
Client SW .
I Function

| USB System SW |

USB Logical
E Device
USB Host il
Controll
omroTer USB Bus
Interface
Figure 7. USB Host’s logical components Figure 8. USB device’s logical components

I Fadet “ s op ENDF FLow |

[272008 sl -) 1 0 -] o M ||Hseq:7 ||2 bytes|| 288.000ns 1. 284 565 328
Packet 7 S o= ACK i

= 273012 s 1 1 0 = 1 1 Hzeq:0 50,584 us 1. 3684 565616
[" = . ACK EMDF | Dir [Seqi [HumP | [F Low

= 273032 s 1 1 0 -] o 1 Hseq:1 248 000 ns 1. 364 846 200

Pacet o 5
E 273035 5
Padet 5 5
B 273129 =

1. 364 846 448

44 458 us 1.385 112872

Padet T =3 'TP ACK, EMDP | Dir | SegN |MumP |[* LOw

= 2723141 s 1 1 0 -] o 1 Hseq:6 || 228.000 ns 1.385 157 128
Fadket o s op ENDF FLow |

= 273144 = a4 1 0 -] o M ||Hseq:2 |[44 bytea|[424.000ns 1. 365 157 456
Padet T =3 'TP ACK, EMDP | Dir | SegN |MumP |[* LOw Time Stamp

= 273147 s 1 1 0 = 1 0 Hseq:7 6.760 us 1. 3285 157 880

Figure 9. USB 3.0 trace example.

4. FPGA-Based Embedded Systems

Embedded system often refers to the non-PC systems which combine hardware and software
design. In general, it contains embedded micro-processor (8-bit, 16-bit or 32 bit), storage and
peripherals, embedded OS (real-time and multi-task) and applications (Fig. 10).

Embedded systems have some characteristics which differ from other computing systems [10].

e Small system kernel.
e Specific-functioned.
e Real-time OS.

In terms of embedded hardware, its core component is the embedded microprocessor. At present
there are over 1,000 kinds of embedded processors in the world and the popular architectures are
more than thirty, in which Intel MCS-8051 is ever the overwhelming majority. In recent years the
small volume, high performance and low power consumption become dominant factors of embedded
system design considerations. The professional intellectual property (IP) core providers like ARM,
MIPS Corps. offer high-quality embedded cores to semiconductor manufacturers, by which all kinds
of chips on different devices applied to diverse areas, are widely produced.

78 Verification Environments for USB Controller

4.1 FPGA-Based Embedded Environment

Embedded design flow combine embedded SW flow and FPGA HW flow. The hardware design
flow consists of standard FPGA design steps such as design entry, simulation, synthesis and
implementation. The software design flow consists of C code, C/C++ compilation to linker and
debugger. Generated HW binary file for FPGA configuration and SW code written into the board
through JTAG.

This type of setup verification environment also requires USB PHY, and consists of target board
and USB PHY (Fig. 11).

SW code HW binary file
RN JT A RO
Target Board
On-Chip RAM

FPGA-based USB

Flash Bmbedded embedded system <:>, PHY

Programmable
Cache Logic

Serial Port qmmmp) UART

External Devices 4} External Bus
Interface FPGA

Figure 10. Design diagram of FPGA-based Figure 11. FPGA-based embedded system
embedded system. implementation.

5. Conclusion

Simulation-based verification can be used to start developing USB controller. Developing
SystemC level models and parallel workaround on HW and SW can allow shorter time to market.
SystemC models usage allows fast simulation time. After RTL has stabilized FPGA-based or FPGA-
based embedded system can be created. Prototyping can help most in the following SW Validation
and Integration tasks: OS configuration & installing, kernel space debugging, on-chip debugging,
user space debugging, unit testing, system testing, field diagnostics and lab diagnostics.

FPGA-based prototypes in particular provide the most help in the highlighted area enabling:

- Physical-layer interface compatibility checking
- At-Speed Debug

- Regression Testing

- Multi-Core Integration

- In-Field Tests

And finally prototyping USB controller allows testing SW and HW with real world USB PHY
and with real world USB devices. Testing with real world devices and real speed will allow silicone
success on first tape out. It is very hard to imagine more useful environment than the real world
testing environment.

Real world testing at USB 3.0 speeds helps to verify the architecture, such as memory
management and interoperability tests for USB 3.0 standard compliance. Finally, the FPGA
validation platform can also be used for USB Implementers Forum certification of a prototype design
and Windows Hardware Certification Kit by Microsoft. New driver stacks are required to handle the
faster USB 3.0 speeds, and simply extending USB 2.0 architectures to support USB 3.0. Universality
of the USB protocol requires that hosts are tested with hundreds of USB 2.0 devices and all available
USB 3.0 devices.

G. Zargaryan 79

Real world prototype can be present in many technical exhibitions. Also it can be given to
customers to try if it meets their needs, to try different configurations of RTL, different modes, etc.

References

[1] E. Jimenez, “Challenges in system on chip verification”, International Workshop on
Microprocessor Test and Verification, pp.52-60, 2006.

[2] Source: Collett International Research, Inc.

[3] C. Pixley, et al, “Functional verification 2003: technology, tools and methodology”,
International Conference on ASIC, vol.1, pp.1-5, 2003.

[4] S. Swan, “SystemC transaction level modelsand RTL verification”, Proc. 43rd ACM/IEEE
Design Automation Conference, pp. 90-92, 2006.

[5] S. Tasiran and K. Keutzer, "Coverage metrics for functional validation of hardware designs",
IEEE Design & Test of Computers, vol. 18, no. 4, pp. 36-45, 2001.

[6] Y. Lin, et al., “Versatile PC/FPGA-based verification/Fast prototyping Platform with multimedia
applications”, IEEE Transactions on Instrumentation and Measurement, vol.2, pp.1490-1495,
2007.

[7] A.Doug, L. Austin, FPGA-Based Prototyping Methodology Manual, Published by Synopsys,
inc., Mountain View, CA, USA, 2011.

[8] R. A. Dougal, “Design tools for electric ship systems”, IEEE FElectric Ship Technologies
Symposium, pp. 8-11, Philadelphia, PA, July 2005.

[9] USB 2.0 Specification, April 27, 2000, www.usb.org.

[I0]F. Vahid and T. Givargis, Embedded System Design — a Unified
Hardware/Softwarelintroduction, John Wiley & Sons, Inc., pp. 1.1-1.2, 2002.

Submitted 20.12.2012, accepted 21.02.2013.

Jwdwyhwwih hwonpnujuw b nnnp nEiuwywnpnn hwigniygh unniqiwl
dhgwijuyptipp

Q.. Qupqupjwul
Udthnthmd

EityunpnGuyhG vwppuwynpnuiGtnph pwpnnipnilp b GpuwlGg Jpw qpjuo wwhwGoGhpp
opkigopn wdmd L6: Uwywpwwmw-opwqpuihl hwdwnpnuip, unnignuip b nijuw gnipu qunt
hpwwumwunmp nilp Gwhiwqoiwb thnynud nuipdt) GG yuplnpugniy G wwhwGoGhnp:

Uyhnwwnwlpnid Gepyujuwgyuo G0 hwiwwyhwmwGh hwonppuub nnnh (X<49%) nhjujwuwpnn
hwlqgniyygh Gwjuwqodwl L umniquwl thoytph hpdGwlwG nmnhGipp” hpblg
wnwybnipniGGhpny m pipmp niGGtpny:

Guujwo (wpuwqodwl L uvnniqiul wnjw yhdwyhg' wmwpptip dnnbGtp niGG6 mwpptin
wpynibwybnnmpmi:. <wpyh wnelhny wnnpl Gepujwgduop’ YJupbh B ubnd
dwilytnGtpnd Gwhiwqot] pupdpuung {<%h nEjuwyjwpnn hwignyyg:

80 Verification Environments for USB Controller
Cpena mpoBepKH yHpaBJsSIOLIETO y3Jla YHUBEPCAIBHOW MOCIEA0BATEIHLHON ITUHbI
I'. 3aprapsu

AHHOTALIUA

CHOHOCTb 3JIEKTPOHHOTO OOOpYIOBaHUS U MpPEAbsSBISIEMble K HEMY TpeOOBaHUS
pacTyT ¢ KaXJbIM JHEM. AMIMapaTHO-NMPOrpaMMHOE COMOCTAaBJICHUE, IPOBEPKA U aKTyalbHOCTb
BBIXOJIa Ha PHIHOK CTaJIM BaKHEUILIMMU COCTABIISIOUIMMU Ha 3Tale €ro MpOeKTUPOBAHUSL.

B pabote mnpexacraBieHbl OCHOBHBIE IyTH JTama MPOEKTHUPOBAHUS M IPOBEPKHU
YOPABJISIONIET0 y3JIa yHHBEpcaibHOUM mocnenoBatenbHoil muHbl (YIILI) co Bcemu cBommm
MPEUMYIIECTBAMH U HEJJOCTaTKaMHU.

B 3aBucumoctu 0T croco6a MpoeKTUPOBaHMS U MPOBEPKHU, Pa3IUYHbIE MOAEIU UMEIOT
paznmuunyio dddextuBHOCT. C y4ETOM HUIKEU3IOKEHHOTO MOXHO B CXKAThIe CPOKH
IIPOEKTUPOBATh BBICOKOKAYECTBEHHBIE yIIpaBisatomue y3iabel Y.

